In February 2023, two Monstera deliciosa Liebm. (Araceae) plants with typical symptoms of leaf rust disease were detected at a grocery store in Oconee Co., South Carolina. Symptoms included chlorotic leaf spots and abundant brownish uredinia, mainly on the adaxial surface of more than 50% of leaves. The same disease was detected on 11 out of 481 M. deliciosa plants in a greenhouse at a plant nursery located in York Co., South Carolina, in March 2023. The first plant sample detected in February was used for morphological characterization, molecular identification, and pathogenicity confirmation of the rust fungus. Urediniospores were densely aggregated, globose, golden to golden brown in color, and measured 22.9 to 27.9 µm (aver. 26.0 ± 1.1 µm; n=50) in diameter with wall thickness at 1.3 to 2.6 µm (aver. 1.8 ± 0.3 µm; n=50). Telia were not observed. These morphological traits aligned with those of Pseudocerradoa paullula (basionym: Puccinia paullula; Ebinghaus et al. 2022; Sakamoto et al. 2023; Sydow and Sydow 1913; Urbina et al. 2023). Genomic DNA was extracted from urediniospores collected from the naturally infected plant sample and used for PCR amplification and DNA sequencing of the large subunit (LSU) genetic marker with primers LRust1R and LR3 (Vilgalys and Hester 1990; Beenken et al. 2012). The LSU sequence of the rust fungus in South Carolina (GenBank accession: OQ746460) is 99.9% identical to that of Ps. paullula voucher BPI 893085 (763/764 nt.; KY764151), 99.4% identical to that of voucher PIGH 17154 in Florida, USA (760/765 nt.; OQ275201), and 99% identical to that of voucher TNS-F-82075 in Japan (715/722 nt.; OK509071). Based on its morphological and molecular characteristics, the causal agent was identified as Ps. paullula. This pathogen identification was also corroborated by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Plant Pathogen Confirmatory Diagnostics Laboratory in Laurel, Maryland. To confirm the fungus's pathogenicity on M. deliciosa and M. adansonii Schott (Sakamoto et al. 2023), three plants of each Monstera species were inoculated by spraying with a suspension of urediniospores collected from the original plant sample (1 × 106 spores per ml; approx. 40 ml per plant). Three non-inoculated control plants of each host species were treated with deionized water in the same manner. Plants were placed in a plastic tray with wet paper towels to maintain moisture. The tray was placed at 22C for an 8-h photoperiod and covered for five days to facilitate infection. On 25 days after inoculation, abundant spots bearing urediniospores were produced on all leaves of inoculated M. deliciosa plants. A few uredinia were observed on two of the three inoculated M. adansonii plants. All non-inoculated control plants remained asymptomatic. Morphological features of urediniospores collected from inoculated plants matched those of Ps. paullula used as the inoculum. Aroid leaf rust on Monstera plants was officially reported in Australia, China, Japan, Malaysia, Philippines, and Florida, USA (Shaw 1991; Sakamoto et al. 2023; Urbina et al. 2023). This is the first report of Ps. paullula causing this disease on M. deliciosa in South Carolina, USA. Monstera species are popular indoor and landscape plants. Potential impact and regulatory responses regarding Ps. paullula, a newly introduced and rapidly spreading pathogen in the USA, warrant further evaluation and discussion.
Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.
Trichinellosis is an important zoonotic parasitic disease worldwide and is principally caused by ingesting animal meat containing Trichinella infective larvae. Aspartyl aminopeptidase is an intracytoplasmic metalloproteinase that specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids (aspartic acid and glutamate), and plays an important role in the metabolism, growth and development of organisms. In this study, a novel T. spiralis aspartyl aminopeptidase (TsAAP) was cloned and expressed, and its biological properties and roles in worm growth and development were investigated. The results revealed that TsAAP transcription and expression in diverse T. spiralis stages were detected by RT-PCR and Western blotting, and primarily localized at cuticle, stichosome and intrauterine embryos of this nematode by immunofluorescence test. rTsAAP has the enzymatic activity of native AAP to hydrolyze the substrate H-Glu-pNA. There was a specific binding between rTsAAP and murine erythrocyte, and the binding site was localized in erythrocyte membrane proteins. Silencing of TsAAP gene by specific dsRNA significantly reduced the TsAAP expression, enzymatic activity, intestinal worm burdens and female fecundity. The results demonstrated that TsAAP participates in the growth, development and fecundity of T. spiralis and it might be a potential target molecule for anti-Trichinella vaccines.
An intercomparison exercise (IC) on whole body dosemeters to determine the quantity personal dose equivalent Hp (10) in photon radiation fields was jointly organised and conducted by the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for individual monitoring services (IMS) in Asia and the Pacific region. This was arranged to help the IMS in the region to achieve a more accurate dosimetry service and to improve their performance. Twenty-four IMS participated in this IC. Four sets of dosemeters were irradiated using X-ray and gamma radiation qualities at 0° and 20° angle of incidence, respectively. All the IMS provided results that were within the acceptable limits defined by the IAEA. However, only a minority of participants reported confidence intervals that included the reference dose, for each exposure scenario. For few systems, the overall performance could be significantly improved by reviewing calibration procedures.
A T. spiralis serine protease 1.2 (TsSP1.2) was identified in the muscle larvae (ML) and intestinal larvae surface/excretory-secretory (ES) proteins by immunoproteomics. The aim of this study was to determine the TsSP1.2 function in the process of T. spiralis intrusion, growth and reproduction by using RNA interference (RNAi). RNAi was used to silence the expression of TsSP1.2 mRNA and protein in the nematode. On 2 days after the ML were electroporated with 2 µM of TsSP1.2-specific siRNA 534, TsSP1.2 mRNA and protein expression declined in 56.44 and 84.48%, respectively, compared with untreated ML. Although TsSP1.2 silencing did not impair worm viability, larval intrusion of intestinal epithelium cells (IEC) was suppressed by 57.18% (P < 0.01) and the suppression was siRNA-dose dependent (r = 0.976). Infection of mice with siRNA 534 transfected ML produced a 57.16% reduction of enteral adult burden and 71.46% reduction of muscle larva burden (P < 0.05). Moreover, silencing of TsSP1.2 gene in ML resulted in worm development impediment and reduction of female fertility. The results showed that silencing of TsSP1.2 by RNAi inhibited larval intrusion and development, and reduced female fecundity. TsSP1.2 plays a crucial role for worm invasion and development in T. spiralis life cycle, and is a potential vaccine/drug target against Trichinella infection.
Secured financial transactions can now be conveniently made via mobile devices for various products and services, such as e-hailing. However, limited research exists on the factors influencing the adoption of mobile payments specifically for e-hailing services, despite the growing interest in mobile payments in China. This cross-sectional study quantitatively assessed the influence of perceived usefulness, perceived ease of use, social influence, facilitating conditions, perceived security, and lifestyle compatibility on the intention to adopt and the actual adoption of mobile payment for e-hailing services. An online self-administered survey was conducted, involving 413 respondents from China. The results revealed a significant positive influence of perceived ease of use, social influence, facilitating conditions, and perceived security on the intention to adopt mobile payment. Additionally, the study found that the intention to adopt mobile payment positively influenced the actual adoption of mobile payments. Meanwhile, perceived usefulness and lifestyle compatibility demonstrated an insignificant influence on the intention to adopt mobile payments. Subgroup analysis further revealed gender-based differences, indicating that the influence of the intention to adopt mobile payment on the adoption of mobile payment for e-hailing services varied significantly between male and female respondents. Furthermore, the influence of facilitating conditions on the intention to adopt mobile payment for e-hailing services also differed significantly among respondents of different age groups. These findings contribute to a better understanding of the factors influencing the adoption of mobile payment for e-hailing services and provide insights for service providers and policymakers in promoting its adoption.
The millions-worth revenue derived from large-scale food delivery characterises the service as a relatively established phenomenon with potential growth. The current cross-sectional research examined online food delivery service quality on consumer satisfaction and reuse intention. Service quality was divided into seven categories (i.e., reliability, assurance, security, maintaining food quality, system operation, traceability, and perceived service value). Perceived service value offer the unique understanding of the online food delivery consumer satisfaction. Empirical data were elicited from 1352 valid respondents and subsequently assessed through the partial least square structural equation modelling. Findings revealed that reliability, assurance, maintaining food quality, system operation, traceability, and perceived service value could elevate customer satisfaction and optimize the intention to reuse food delivery services. Specific measures to improve service quality, including staff training, improved after-sales service, and system optimisation, were proposed to increase users' satisfaction and intention to reuse optimally.
A putative serine protease of T. spiralis (TsSP) was expressed in Escherichia coli and its potential as a diagnostic antigen was primarily assessed in this study. Anti-Trichinella IgG in serum samples from T. spiralis different animal hosts (mice, rats, pigs and rabbits) were detected on Western blot analysis with rTsSP. Anti-Trichinella antibodies were detected in 100% (30/30) of experimentally infected mice by rTsSP-ELISA. Cross-reactions of rTsSPELISA were not found with sera from mice infected with other parasites (S. erinaceieuropaei, S. japonicum, C. sinensis, A. cantonensis and T. gondii) and sera from normal mice. There was no statistical difference in antibody detection rate among mice infected with the encapsulated Trichinella species (T. spiralis, T. nativa, T. britovi, and T. nelsoni) (P>0.05). The results of rTsSP-ELISA showed that serum specific antibody IgG in mice infected with 100 or 500 T. spiralis muscle larvae (ML) were detectable early at 7-8 dpi, but not detected by ML ES antigen-ELISA prior to 10-12 dpi. Specific anti-Trichinella IgG was detected in 100% (18/18) of infected pigs by rTsSP-ELISA and ES-ELISA, but no specific antibodies was not detected in 20 conventionally raised normal pigs by two antigens. The results showed the rTsSP had the potential for early serodiagnosis of animal Trichinella infection, however it requires to be assayed with early infection sera of swine infected with Trichinella and other parasites.
Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.