Abstract: Photocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobically digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efficiency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efficiency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that affect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV-Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efficiency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was effective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process.
The under-treated wastewater, especially remaining carcinogenic aromatic compounds in wastewater discharge has been expansively reported, wherein the efficiency of conventional wastewater treatment is identified as the primary contributor source. Herein, the advancement of wastewater treatments has drawn much attention in recent years. In the current study, combined sequential and hybridized treatment of thermolysis and coagulation-flocculation provides a novel advancement for environmental emerging pollutant (EP) prescription. This research is mainly demonstrating the mitigation efficiency and degradation pathway of pararosaniline (PRA) hybridized and combined sequential wastewater treatment. Notably, PRA degradation dominantly via a linkage of reaction: thermal cleavage, deamination, silication and diazene reduction. Thermolysis acts as an initiator for the PRA decomposition through thermally induced bond dissociation energy (BDE) for molecular fragmentation whilst coagulation-flocculation facilitates the formation of organo-bridged silsesquioxane as the final degradation product. Different from conventional treatment, the hybridized treatment showed excellent synergistic degradability by removing 99% PRA and its EPs, followed by combined sequential treatment method with 86% reduction. Comprehensive degradation pathway breakdown of carcinogenic and hardly degradable aromatic compounds provides a new insight for wastewater treatment whereby aniline and benzene are entirely undetectable in effluent. The degradation intermediates, reaction derivatives and end products were affirmed by gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometry (GC-MS, FTIR and UV-Vis). This finding provides valuable guidance in establishing efficient integrated multiple-step wastewater treatments.
The theme of present research demonstrates performance of copper (II) sulfate (CuSO4) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO4. Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp2 carbon to form C-C of the sp3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k1 is 6.5224 whereas the degradation rate constant with catalyst, k2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.
Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.
The treatment of single and binary azo dyes, as well as the effect of the circuit connection, aeration, and plant on the performance of UFCW-MFC, were explored in this study. The decolorization efficiency of Remazol Yellow FG (RY) (single dye: 98.2 %; binary dye: 92.3 %) was higher than Reactive Black 5 (RB5) (single: 92.3 %; binary: 86.7 %), which could be due to monoazo dye (RY) requiring fewer electrons to break the azo bond compared to the diazo dye (RB5). In contrast, the higher decolorization rate of RB5 in binary dye indicated the removal rate was affected by the electron-withdrawing groups in the dye structure. The closed circuit enhanced about 2% of color and 4% of COD removal. Aeration improved the COD removal by 6%, which could be contributed by the mineralization of intermediates. The toxicity of azo dyes was reduced by 11-26% and the degradation pathways were proposed. The dye removal by the plants was increased with a higher contact time. RB5 was more favorable to be uptook by the plant as RB5 holds a higher partial positive charge. 127.39 (RY), 125.82 (RB5), and 58.66 mW/m3 (binary) of maximum power density were generated. The lower power production in treating the binary dye could be due to more electrons being utilized for the degradation of higher dye concentration. Overall, the UFCW-MFC operated in a closed circuit, aerated, and planted conditions achieved the optimum performance in treating binary azo dyes containing wastewater (dye: 87-92%; COD: 91%) compared to the other conditions (dye: 83-92%; COD: 78-87%).
This study aimed to compare the performance of biofiltration, constructed wetland, and constructed wetland microbial fuel cell (CW-MFC). The transformation from a biofiltration unit to a hybrid CW-MFC was demonstrated with the advantages of improvement of wastewater treatment while generating electricity simultaneously. The introduction of plants to the upper region of the bioreactor enhanced the DO level by 0.8 mg/L, ammonium removal by 5 %, and COD removal by 1 %. The integration of electrodes and external circuits stimulated the degradation rate of organic matter in the anodic region (1 % without aeration and 3 % with aeration) and produced 5.13 mW/m3 of maximum power density. Artificial aeration improved the nitrification efficiency by 38 % and further removed the residual COD to an efficiency of 99 %. The maximum power density was also increased by 3.2 times (16.71 mW/m3) with the aid of aeration. In treating higher organic loading wastewater (3M), the maximum power density showed a significant increment to 78.01 mW/m3 (4.6-fold) and the COD removal efficiency was 98 %. The ohmic overpotential dominated the proportion of total loss (67-91 %), which could be ascribed to the low ionic conductivity. The reduction in activation and concentration loss contributed to the lower internal resistance with the additional aeration and higher organic loading. Overall, the transformation from biofiltration to a hybrid CW-MFC system is worthwhile since the systems quite resemble while CW-MFC could improve the wastewater treatment as well as recover energy from the treated wastewater.
Sugarcane vinasse has been reported as a high strength industrial wastewater that could cause severe environmental pollution due to its complex and bio-refractory compounds. Thus, the combined coagulation and sequencing batch biofilm reactor (SBBR) system was employed for the sugarcane vinasse treatment. This study aims to determine the recommended conditions of various parameters under coagulation and SBBR and investigate the effectiveness of combined processes. First, the approach of the coagulation process could achieve the maximum COD reduction and decolorization efficiencies of 79.0 ± 3.4% and 94.1 ± 1.9%, respectively, under the recommended conditions. Next, SBBR as an integrated biofilm reactor showed excellent synergistic biodegradability, removing 86.6 ± 4.3% COD concentration and 94.6 ± 3.8% color concentration at 3.0 g·COD/L of substrate loading concentration. The kinetic studies of SBBR revealed that the first-order kinetic model was the best fit for COD reduction efficiency. In contrast, the second-order kinetic model was the best fit for decolorization efficiency. The SBBR reaction was further investigated by ultraviolet-visible spectrophotometry (UV-Vis). In the combined processes, SBBR followed by the coagulation process (SBBR-CP) showed greater COD reduction and decolorization efficiencies (97.5 ± 0.3 and 99.4 ± 0.1%) when compared to the coagulation process followed by SBBR (CP-SBBR). This study demonstrated the removal performance and potential application of the combined sequential process to produce effluent that can be reused for bioethanol production and fertigation. This finding provides additional insight for developing effective vinasse treatment using combined chemical and biological processes.
Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.
The enhancement of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) performance in energy retrieval from caffeine containing wastewater has been explored via various operating conditions (hydraulic retention time (HRT), multianode (MA), multicathode current collector (MC), external resistance). The anaerobic decaffeination and COD removal improved by 37 and 12% as the HRT extended from 1 to 5 d. The increment in contact time between the microbes and organic substrates promoted the degradation and contributed to higher power output (3.4-fold), CE (eightfold), and NER (14-16-fold). The MA and MC connections facilitated the electron transfer rate and the degradation rate of organic substrates in the multiple anodic zones, which enhanced the removal efficiency in the anaerobic compartment (Caffeine: 4.2%; COD: 7.4%) and led to higher electricity generation (Power: 4.7-fold) and energy recovery (CE: 1.4-fold; NER: 2.3-2.5-fold) compared to SA. The lower external resistance favored the growth of electrogens and induced higher electron flux, where the best treatment performance and electricity production was obtained when the external resistance approached the internal resistance. Overall, it was noteworthy that the optimum operating conditions were achieved with 5 d HRT, MA, and MC connection along with external resistance of 200 Ω, which significantly outperformed the initial conditions (1 d HRT, SA connection, and 1000 Ω) by 43.7 and 29.8% of caffeine and COD removal in the anaerobic compartment, respectively as well as 14-fold of power generation.
Research into the speciation of sulfur and hydrogen molecules produced through the complex process of thermophilic dark fermentation has been conducted. Detailed surface studies of solid-gas systems using real biogas (biohydrogen) streams have unveiled the mechanisms and specific interactions between these gases and the physicochemical properties of a zeolite as an adsorbent. These findings highlight the potential of zeolites to effectively capture and interact with these molecules. In this study, the hydrogen sulphide removal analysis was conducted using 0.8 g of the adsorbent and at various reaction temperatures (25-125 °C), a flow rate of 100 mL min-1, and an initial concentration of approximately 5000 ppm hydrogen sulphide. The reaction temperature has been observed to be an essential parameter of Zeolite Socony Mobil - 5 adsorption capacity. The optimum adsorption capacity attains a maximum value of 0.00890 mg g-1 at an optimal temperature of 25 °C. The formation of sulphur species resulting from the hydrogen sulphide adsorption on the zeolite determines the kinetics, thermodynamics, and mass transfer behaviours of Zeolite Socony Mobil - 5 in hydrogen sulphide removal and Zeolite Socony Mobil - 5 is found to improve the quality of biohydrogen produced in thermophilic environments. Biohydrogen (raw gas) yield was enhanced from 2.48 mol H2 mol-1 hexose consumed before adsorption to 2.59 mol H2 mol-1 hexose consumed after adsorption at a temperature of 25 °C. The Avrami kinetic model was fitted for hydrogen sulphide removal on Zeolite Socony Mobil - 5. The process is explained well and fitted using the Temkin isotherm model and the investigation into thermodynamics reveals that the adsorption behaviour is exothermic and non-spontaneous. Furthermore, the gas molecule's freedom of movement becomes random. The adsorption phase is restricted by intra-particle diffusion followed by film diffusion during the transfer of hydrogen sulphide into the pores of Zeolite Socony Mobil - 5 prior to adsorption on its active sites. The utilisation of Zeolite Socony Mobil - 5 for hydrogen sulphide removal offers the benefit of reducing environmental contamination and exhibiting significant applications in industrial operations.