Displaying all 4 publications

Abstract:
Sort:
  1. Mohd Sahardi NFN, Jaafar F, Mad Nordin MF, Makpol S
    PMID: 32419792 DOI: 10.1155/2020/1787342
    Background: Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration.

    Methods: Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size.

    Results: Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index.

    Conclusions: Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.

  2. Mohd Sahardi NFN, Jaafar F, Tan JK, Mad Nordin MF, Makpol S
    Nutrients, 2023 Oct 25;15(21).
    PMID: 37960173 DOI: 10.3390/nu15214520
    (1) Background: Muscle loss is associated with frailty and a reduction in physical strength and performance, which is caused by increased oxidative stress. Ginger (Zingiber officinale Roscoe) is a potential herb that can be used to reduce the level of oxidative stress. This study aimed to determine the effect of ginger on the expression of metabolites and their metabolic pathways in the myoblast cells to elucidate the mechanism involved and its pharmacological properties in promoting myoblast differentiation. (2) Methods: The myoblast cells were cultured into three stages (young, pre-senescent and senescent). At each stage, the myoblasts were treated with different concentrations of ginger extract. Then, metabolomic analysis was performed using liquid chromatography-tandem mass spectrometry (LCMS/MS). (3) Results: Nine metabolites were decreased in both the pre-senescent and senescent control groups as compared to the young control group. For the young ginger-treated group, 8-shogaol and valine were upregulated, whereas adipic acid and bis (4-ethyl benzylidene) sorbitol were decreased. In the pre-senescent ginger-treated group, the niacinamide was upregulated, while carnitine and creatine were downregulated. Ginger treatment in the senescent group caused a significant upregulation in 8-shogaol, octadecanamide and uracil. (4) Conclusions: Ginger extract has the potential as a pharmacological agent to reduce muscle loss in skeletal muscle by triggering changes in some metabolites and their pathways that could promote muscle regeneration in ageing.
  3. Abdull Rahim U, Mustapa M, Mohamed Shakrin NNS, Nurdin A, Mohamad Taridi N, Yusof YAM, et al.
    PLoS One, 2024;19(11):e0314280.
    PMID: 39576841 DOI: 10.1371/journal.pone.0314280
    Cervical cancer ranked fourth most common malignancy among women worldwide despite the establishment of vaccination programmes. This systematic review evaluates the anti-cancer properties of turmeric and ginger bioactive compounds, specifically curcumin, 6/10-gingerol, and 6/10-shogaol, and their combination in cervical cancer through in-vitro and in-vivo models. A comprehensive electronic search was performed using Science Direct, PubMed, and Scopus from inception until the second week of June 2024 for studies published in English. Only studies investigating the effects of curcumin, gingerol, shogaol, and/or their combination in human cervical cancer cell lines and/or rodent animal models implanted with cervical cancer xenografts were included. Altogether, 27 studies were included in this review. The evidence gathered indicated that curcumin, 6/10-gingerol and 6-shogaol exert their anticancer action through modulation of cell signalling pathways, including AMPK, WNT, PI3K/AKT, and NF-κB pathway, and mediators including Bax/Bcl2, TNF-α, EGFR, COX-2, caspases-3, -9, p53, and pRb. However, the synergistic effect of these bioactive compounds is not known due to lack of evidence. In conclusion, curcumin, 6/10-gingerols, and 6-shogaols hold promise as therapeutic agents for cervical cancer. Yet, further research is essential to understand their combined efficacy, emphasising the need for additional studies exploring the synergistic anticancer effects of these bioactive compounds. Additional factors to explore include long-term effects and susceptibility of chemoresistant cervical cancer cells towards curcumin, shogaols, and gingerols.
  4. Razak AM, Zakaria SNA, Abdul Sani NF, Ab Rani N, Hakimi NH, Mohd Said M, et al.
    Front Pharmacol, 2023;14:1006265.
    PMID: 36843947 DOI: 10.3389/fphar.2023.1006265
    Introduction: Ginger (Zingiber officinale Roscoe) can scavenge free radicals, which cause oxidative damage and inflamm-ageing. This study aimed to evaluate the antioxidant and anti-inflammatory effects of soil ginger's sub-critical water extracts (SWE) on different ages of Sprague Dawley (SD) rats. The antioxidant properties and yield of SWE of soil- and soilless-grown ginger (soil ginger and soilless ginger will be used throughout the passage) were compared and evaluated. Methods: Three (young), nine (adult), and twenty-one (old) months old SD rats were subjected to oral gavage treatments with either distilled water or the SWE of soil ginger at a concentration of 200 mg/kg body weight (BW) for three months. Results: Soil ginger was found to yield 46% more extract than soilless ginger. While [6]-shogaol was more prevalent in soilless ginger, and [6]-gingerol concentration was higher in soil ginger (p < 0.05). Interestingly, soil ginger exhibited higher antioxidant activities than soilless ginger by using 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay. With ginger treatment, a reduced levels of tumour necrosis factor-α (TNF-α) and C-reactive protein (CRP) but not interleukin-6 (IL-6) were observed in young rats. In all ages of SD rats, ginger treatment boosted catalase activity while lowering malondialdehyde (MDA). Reduction of urine 15-isoprostane F2t in young rats, creatine kinase-MM (CK-MM) in adult and old rats and lipid peroxidation (LPO) in young and adult rats were also observed. Discussion: The findings confirmed that the SWE of both soil and soilless grown ginger possessed antioxidant activities. Soil ginger produced a higher yield of extracts with a more prominent antioxidant activity. The SWE of soil ginger treatment on the different ages of SD rats ameliorates oxidative stress and inflammation responses. This could serve as the basis for developing a nutraceutical that can be used as a therapeutic intervention for ageing-related diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links