Displaying all 5 publications

Abstract:
Sort:
  1. Yusof F, Khanahmadi S, Amid A, Mahmod SS
    Springerplus, 2016;5:57.
    PMID: 26904389 DOI: 10.1186/s40064-015-1621-3
    Cocoa pod husk (CPH) is a by-product of cocoa production obtained after removing the beans from the fruit. The analysis of CPH has shown that it contains high amounts of protein. This study is aimed to utilize this protein source in hydrolase enzyme production. In this study, seven hydrolase enzymes (amylase, fructosyltransferase, mannanase, glucosidase, glucanase, lipase and protease) were screened from CPH for the first time for feasible industrial production. Among these hydrolases, lipase was chosen for the next steps of experiments as it has a lot of applications in different industries. The extraction of high active lipase from CPH has been done under optimum conditions. The condition that was optimum for the three major factors was achieved using Face centered central composite design (FCCCD) with response surface methodology (RSM) to obtain the highest enzyme activity of crude lipase from CPH. The optimum condition of extraction is used for preparation of cross-linked enzyme aggregate (CLEA). For the production of immobilized biocatalyst, the technique of CLEA is considered as an effective technique for its industrially attractive advantages. Referring to the results of OFAT, CLEA-lipase was prepared in the best condition at the presence of 30 mM ammonium sulphate, 70 mM glutaraldehyde with 0.23 mM Bovine serum albumin as an additive. Immobilization effectively improved the stability of lipase against various organic solvents.
  2. Khanahmadi S, Yusof F, Amid A, Mahmod SS, Mahat MK
    J Biotechnol, 2015 May 20;202:153-61.
    PMID: 25481099 DOI: 10.1016/j.jbiotec.2014.11.015
    Cross-linked enzyme aggregate (CLEA) is easily prepared from crude enzyme and has many advantages to the environment and it is considered as an economic method in the context of industrial biocatalysis compared to free enzyme. In this work, a highly active and stable CLEA-lipase from cocoa pod husk (CPH) which is a by-product after removal of cocoa beans, were assayed for their hydrolytic activity and characterized under the optimum condition successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of the three significant factors (concentration of ammonium sulfate, concentration of glutaraldehyde and concentration of additive) to achieve higher enzyme activity of CLEA. From 20 runs, the highest activity recorded was around 9.407U (83% recovered activity) under the condition of using 20% saturated ammonium sulfate, 60mM glutaraldehyde as cross-linker and 0.17mM bovine serum albumin as feeder. Moreover, the optimal reaction temperature and pH value in enzymatic reaction for both crude enzyme and immobilized were found to be 45°C at pH 8 and 60°C at pH 8.2, respectively. A systematic study of the stability of CLEA and crude enzyme was taken with regards to temperature (25-60°C) and pH (5-10) value and in both factors, CLEA-lipase showed more stability than free lipase. The Km value of CLEA was higher compared to free enzyme (0.55mM vs. 0.08mM). The CLEA retained more than 60% of the initial activity after six cycles of reuse compared to free enzyme. The high stability and recyclability of CLEA-lipase from CPH make it efficient for different industrial applications.
  3. Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, et al.
    Bioprocess Biosyst Eng, 2020 Jul;43(7):1153-1169.
    PMID: 32095989 DOI: 10.1007/s00449-020-02311-x
    This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (
  4. Mahmod SS, Azahar AM, Luthfi AAI, Abdul PM, Mastar MS, Anuar N, et al.
    Sci Rep, 2020 Jun 08;10(1):9167.
    PMID: 32514030 DOI: 10.1038/s41598-020-65702-w
    Two-stage anaerobic digestion of palm oil mill effluent (POME) is a promising method for converting the waste from the largest agricultural industry in Southeast Asia into a clean and sustainable energy. This study investigates the degradation of acid-rich effluent from the dark fermentation stage for the production of biomethane (BioCH4) in a 30-L continuous stirred-tank reactor (CSTR). The continuous methanogenic process was operated with varied HRTs (10 - 1 day) and OLRs (4.6-40.6 gCOD/L.d-1) under thermophilic conditions. Methanothermobacter sp. was the dominant thermophilic archaea that was responsible for the production rate of 4.3 LCH4/LPOME.d-1 and methane yield of 256.77 LCH4kgCOD at HRT of 2 d, which is the lowest HRT reported in the literature. The process was able to digest 85% and 64% of the initial POME's COD and TSS, respectively. The formation of methane producing granules (MPG) played a pivotal role in sustaining the efficient and productive anaerobic system. We report herein that the anaerobic digestion was not only beneficial in reducing the contaminants in the liquid effluent, but generating BioCH4 gas with a positive net energy gain of 7.6 kJ/gCOD.
  5. Tiang MF, Hanipa MAF, Mahmod SS, Zainuddin MT, Lutfi AAI, Jahim JM, et al.
    Bioresour Technol, 2024 Feb;394:130222.
    PMID: 38109981 DOI: 10.1016/j.biortech.2023.130222
    Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links