Displaying all 6 publications

Abstract:
Sort:
  1. Kamal A, Nazari V M, Yaseen M, Iqbal MA, Ahamed MBK, Majid ASA, et al.
    Bioorg Chem, 2019 09;90:103042.
    PMID: 31226469 DOI: 10.1016/j.bioorg.2019.103042
    Three benzimidazolium salts (III-V) and respective selenium adducts (VI-VIII) were designed, synthesized and characterized by various analytical techniques (FT-IR and NMR 1H, 13C). Selected salts and respective selenium N-Heterocyclic carbenes (selenium-NHC) adducts were tested in vitro against Cervical Cancer Cell line (Hela), Breast Adenocarcinoma cell line (MCF-7), Retinal Ganglion Cell line (RGC-5) and Mouse Melanoma Cell line (B16F10) using MTT assay and the results were compared with standard drug 5-Fluorouracil. Se-NHC compounds and azolium salts showed significant anticancer potential. Molecular docking studies of compounds (VI, VII and VIII) showed strong binding energies and ligand affinity toward following angiogenic factors: VEGF-A (vascular endothelial growth factor A), EGF (human epidermal growth factor), HIF (Hypoxia-inducible factor) and COX-1 (Cyclooxygenase-1) suggesting that the anticancer activity of adducts (VI, VII and VIII) may be due to their strong anti-angiogenic effect. In addition, compounds III-VIII were screened for their antibacterial and antifungal potential. Adduct VI was found to be potent anti-fungal agent against A. Niger with zone of inhibition (ZI) value 27.01 ± 0.251 mm which is better than standard drug Clotrimazole tested in parallel.
  2. Hayat K, Tariq U, Wong QA, Quah CK, Majid ASA, Nazari V M, et al.
    Comput Biol Chem, 2021 Oct;94:107567.
    PMID: 34500323 DOI: 10.1016/j.compbiolchem.2021.107567
    Benzimidazolium salts (3-6) were synthesized as stable N-Heterocyclic Carbene (NHC) precursors and their selenium-NHC compounds/Selenones (7-10) were prepared using water as a solvent. Characterization of each of the synthesized compounds was carried out by various analytical and spectroscopic (FT-IR, 1H-, 13C NMR) methods. X-ray crystallographic analyses of single crystals obtained for salts 3 and 5 were carried out. Synthesized salts and their Se-NHCs were tested in-vitro for their anticancer potential against Cervical Cancer Cell line from Henrietta Lacks (HeLa), Breast cancer cell line (MDA-MB-231), Adenocarcinoma cell line (A549) and human normal endothelial cell line (EA.hy926). MTT assay was used for analysis and compared with standard drug 5-flourouracil. Benzimidazolium salts (3-6) and their selenium counter parts (7-10) were found potent anticancer agents. Salt 3-5 were found to be potent anticancer against HeLa with IC50 values 0.072, 0.017 and 0.241 μM, respectively, which are less than standard drug (4.9 μM). The Se-NHCs (7-10) had also shown significant anticancer potential against HeLa with IC50 values less than standard drug. Salts 3, 4 against EA.hy926, compounds 3,5,6, and 10 against MDA-MB-321, and compounds 4, 10 against A-549 cell line were found more potent anticancer agents with IC50 values less than standard drug. Molecular docking for (7-10) showed their good anti-angiogenic potential having low binding energy and significant inhibition constant values with VEGFA (vascular endothelial growth factor), EGF (human epidermal growth factor), COX1 (cyclooxygenase-1) and HIF (hypoxia inducible factor).
  3. Ibrahim AH, Li H, Al-Rawi SS, Majid ASA, Al-Habib OA, Xia X, et al.
    Am J Transl Res, 2017;9(11):4936-4944.
    PMID: 29218091
    OBJECTIVE: The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays.

    METHODS: Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot.

    RESULTS: FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells (P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells (P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control (P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 (P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs (P = 0.006 and 0.000, respectively).

    CONCLUSION: Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway.

  4. Khan MSS, Asif M, Basheer MKA, Kang CW, Al-Suede FS, Ein OC, et al.
    Eur J Pharmacol, 2017 May 15;803:24-38.
    PMID: 28322833 DOI: 10.1016/j.ejphar.2017.03.031
    Despite many treatment options, cancer remains a growing problem and has become the second leading cause of death globally. Here, we present fluorescence molecular tomography (FMT) data regarding the reversion of third generation co-cultured U87+DBTRG and patient-derived GBM tumor model after treatment with novel IL17A inhibitor named FLVM and FLVZ (organic derivatives of caffeic acid). FMT was used to determine tumor angiogenesis volume (assessment of number of blood vessel; the expression of angiogenic factors CD34 and other angiogenic cancer bio-markers) in U87+DBTRG and patient-derived gliomas. Immunohistochemistry was used to determine microvessel density [CD34], and cell proliferation [Ki67]. Western blot was used to assess the interleukin 17A [IL17A], vascular endothelial growth factor [VEGF] and hypoxia-inducible factor-1α [HIF-1α]. Antibody array was used to assess the cancer bio-markers in co-cultured U87+DBTRG gliomas. Animal survival was found to be significantly increased (P<0.0001) after FLVM treatment compared with control-IL17A. After FMT detection, FLVM, administered orally, was found to decrease tumor growth (P<0.0001). FLVM and FLVZ administration resulted in significant decreases in tumor hypoxia [HIF-1α (P<0.05)], angiogenesis [CD34 (P<0.05)], VEGF, IL17A and cell proliferation [Ki67 (P<0.05)] and caused a significant increase of Bax, caspase and FasL (P<0.05), compared with untreated animals. Additionally, Leptin, LPL (P<0.01), FFA (P<0.05) and adipogenesis were downregulated and no additive toxicity was found in mice except calorie-restriction like effect. Use of FLVM can be considered as a novel inhibitor of IL17A for the treatment of human gliomas.
  5. Jafari SF, Keshavarzi M, AbdulMajid AM, Al-Suede FSR, Asif M, Ahamed MBK, et al.
    Res Pharm Sci, 2024 Apr;19(2):203-216.
    PMID: 39035582 DOI: 10.4103/RPS.RPS_247_22
    BACKGROUND AND PURPOSE: The previous work on koetjapic acid (KA) isolated from Sandoricum koetjape showed its efficacy towards colorectal cancer however KA has poor water solubility which poses the biggest hindrance to its efficacy. In the present paper, an attempt was made to study the anti-colon cancer efficacy of KA's potassium salt i.e. potassium koetjapate (KKA) applying in vitro and in vivo methods.

    EXPERIMENTAL APPROACH: KKA was produced by a semi-synthetic method. A human apoptosis proteome profiler array was applied to determine the protein targets responsible for the stimulation of apoptosis. Three doses of KKA were studied in athymic nude mice models to examine the in vivo anti-tumorigenic ability of KKA.

    FINDINGS/RESULTS: The results of this study demonstrated that KKA regulates the activities of various proteins. It downregulates the expression of several antiapoptotic proteins and negative regulators of apoptosis including HSP60, HSP90, Bcl-2, and IGF-1 in HCT 116 cells with consequent upregulation of TRAILR-1 and TRAILR-2, p27, CD40, caspase 3, and caspase 8 proteins. Additionally, KKA showed an in vitro antimetastatic effect against HCT 116 cells. These results are feasibly related to the down-regulation of Notch, Wnt, hypoxia, and MAPK/JNK and MAPK/ERK signalling pathways in HCT 116 cells besides the up-regulation of a transcription factor for cell cycle (pRb-E2F) pathways. In addition, KKA revealed potent inhibition of tumor growth.

    CONCLUSION AND IMPLICATIONS: In sum, the findings indicate that KKA can be a promising candidate as a chemotherapeutic agent against colorectal cancer.

  6. Ng ML, Majid AMSA, Yee SM, Natesan V, Basheer MKA, Gnanasekaran A, et al.
    Support Care Cancer, 2024 May 06;32(6):331.
    PMID: 38710920 DOI: 10.1007/s00520-024-08536-w
    AIM: We evaluated the efficacy and safety of Nuvastatic™ (C5OSEW5050ESA) in improving cancer-related fatigue (CRF) among cancer patients.

    METHODS: This multicenter randomized double-blind placebo-controlled phase 2 trial included 110 solid malignant tumor patients (stage II-IV) undergoing chemotherapy. They were randomly selected and provided oral Nuvastatic™ 1000 mg (N = 56) or placebo (N = 54) thrice daily for 9 weeks. The primary outcomes were fatigue (Brief Fatigue Inventory (BFI)) and Visual Analog Scale for Fatigue (VAS-F)) scores measured before and after intervention at baseline and weeks 3, 6, and 9. The secondary outcomes were mean group difference in the vitality subscale of the Medical Outcome Scale Short Form-36 (SF-36) and urinary F2-isoprostane concentration (an oxidative stress biomarker), Eastern Cooperative Oncology Group scores, adverse events, and biochemical and hematologic parameters. Analysis was performed by intention-to-treat (ITT). Primary and secondary outcomes were assessed by two-way repeated-measures analysis of variance (mixed ANOVA).

    RESULTS: The Nuvastatic™ group exhibited an overall decreased fatigue score compared with the placebo group. Compared with the placebo group, the Nuvastatic™ group significantly reduced BFI-fatigue (BFI fatigue score, F (1.4, 147) = 16.554, p 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links