METHODS: Using Singapore Malaysia Hospital-Based Breast Cancer Registry, clinical information was retrieved from 7064 stage I to III breast cancer patients who were diagnosed between 1990 and 2011 and underwent surgery. Predicted and observed probabilities of positive nodes and survival were compared for each subgroup. Calibration was assessed by plotting observed value against predicted value for each decile of the predicted value. Discrimination was evaluated by area under a receiver operating characteristic curve (AUC) with 95 % confidence interval (CI).
RESULTS: The median predicted probability of positive lymph nodes is 40.6 % which was lower than the observed 43.6 % (95 % CI, 42.5 %-44.8 %). The calibration plot showed underestimation for most of the groups. The AUC was 0.71 (95 % CI, 0.70-0.72). Cancermath predicted and observed overall survival probabilities were 87.3 % vs 83.4 % at 5 years after diagnosis and 75.3 % vs 70.4 % at 10 years after diagnosis. The difference was smaller for patients from Singapore, patients diagnosed more recently and patients with favorable tumor characteristics. Calibration plot also illustrated overprediction of survival for patients with poor prognosis. The AUC for 5-year and 10-year overall survival was 0.77 (95 % CI: 0.75-0.79) and 0.74 (95 % CI: 0.71-0.76).
CONCLUSIONS: The discrimination and calibration of CancerMath were modest. The results suggest that clinical application of CancerMath should be limited to patients with better prognostic profile.
METHODS: We evaluated 88 breast cancer risk variants that were identified previously by GWAS in 11,760 cases and 11,612 controls of Asian ancestry. SNPs confirmed to be associated with breast cancer risk in Asian women were used to construct a polygenic risk score (PRS). The relative and absolute risks of breast cancer by the PRS percentiles were estimated based on the PRS distribution, and were used to stratify women into different levels of breast cancer risk.
RESULTS: We confirmed significant associations with breast cancer risk for SNPs in 44 of the 78 previously reported loci at P
METHODS: We obtained 1294 pairs of images saved in both raw and processed formats from Hologic and General Electric (GE) direct digital systems and a Fuji computed radiography (CR) system, and 128 screen-film and processed CR-digital pairs from consecutive screening rounds. Four readers performed Cumulus-based MD measurements (n = 3441), with each image pair read by the same reader. Multi-level models of square-root percent MD were fitted, with a random intercept for woman, to estimate processed-raw MD differences.
RESULTS: Breast area did not differ in processed images compared with that in raw images, but the percent MD was higher, due to a larger dense area (median 28.5 and 25.4 cm2 respectively, mean √dense area difference 0.44 cm (95% CI: 0.36, 0.52)). This difference in √dense area was significant for direct digital systems (Hologic 0.50 cm (95% CI: 0.39, 0.61), GE 0.56 cm (95% CI: 0.42, 0.69)) but not for Fuji CR (0.06 cm (95% CI: -0.10, 0.23)). Additionally, within each system, reader-specific differences varied in magnitude and direction (p
METHODS AND FINDINGS: We examined cross-sectional differences in MD by age and menopausal status in over 11,000 breast-cancer-free women aged 35-85 years, from 40 ethnicity- and location-specific population groups across 22 countries in the International Consortium on Mammographic Density (ICMD). MD was read centrally using a quantitative method (Cumulus) and its square-root metrics were analysed using meta-analysis of group-level estimates and linear regression models of pooled data, adjusted for body mass index, reproductive factors, mammogram view, image type, and reader. In all, 4,534 women were premenopausal, and 6,481 postmenopausal, at the time of mammography. A large age-adjusted difference in percent MD (PD) between post- and premenopausal women was apparent (-0.46 cm [95% CI: -0.53, -0.39]) and appeared greater in women with lower breast cancer risk profiles; variation across population groups due to heterogeneity (I2) was 16.5%. Among premenopausal women, the √PD difference per 10-year increase in age was -0.24 cm (95% CI: -0.34, -0.14; I2 = 30%), reflecting a compositional change (lower dense area and higher non-dense area, with no difference in breast area). In postmenopausal women, the corresponding difference in √PD (-0.38 cm [95% CI: -0.44, -0.33]; I2 = 30%) was additionally driven by increasing breast area. The study is limited by different mammography systems and its cross-sectional rather than longitudinal nature.
CONCLUSIONS: Declines in MD with increasing age are present premenopausally, continue postmenopausally, and are most pronounced over the menopausal transition. These effects were highly consistent across diverse groups of women worldwide, suggesting that they result from an intrinsic biological, likely hormonal, mechanism common to women. If cumulative breast density is a key determinant of breast cancer risk, younger ages may be the more critical periods for lifestyle modifications aimed at breast density and breast cancer risk reduction.