Displaying all 4 publications

Abstract:
Sort:
  1. Aldalbahi A, Mkawi EM, Ibrahim K, Farrukh MA
    Sci Rep, 2016;6:32431.
    PMID: 27600023 DOI: 10.1038/srep32431
    We report growth of quaternary Cu2 ZnSnS4 (CZTS) thin films prepared by the electrochemical deposition from salt precursors containing Cu (II), Zn (II) and Sn (IV) metals. The influence of different sulfurization times t (t = 75, 90, 105, and 120 min) on the structural, compositional, morphological, and optical properties, as well as on the electrical properties is studied. The films sulfurized 2 hours showed a prominent kesterite phase with a nearly stoichiometric composition. Samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Raman and UV-VIS-NIR spectrometer at different stages of work. X-ray diffraction and Raman spectroscopy analyses confirmed the formation of phase-pure CZTS films. (FESEM) shows that compact and dense morphology and enhanced photo-sensitivity. STEM - EDS elemental map of CZTS cross-section confirms homogeneous distribution. From optical study, energy gap was enlarged with a changed sulfurization times in the range of 1.37-1.47 eV.
  2. Usman F, Dennis JO, Mkawi EM, Al-Hadeethi Y, Meriaudeau F, Ferrell TL, et al.
    Polymers (Basel), 2020 Nov 20;12(11).
    PMID: 33233844 DOI: 10.3390/polym12112750
    This work reports the use of a ternary composite that integrates p-Toluene sulfonic acid doped polyaniline (PANI), chitosan, and reduced graphene oxide (RGO) as the active sensing layer of a surface plasmon resonance (SPR) sensor. The SPR sensor is intended for application in the non-invasive monitoring and screening of diabetes through the detection of low concentrations of acetone vapour of less than or equal to 5 ppm, which falls within the range of breath acetone concentration in diabetic patients. The ternary composite film was spin-coated on a 50-nm-thick gold layer at 6000 rpm for 30 s. The structure, morphology and chemical composition of the ternary composite samples were characterized by FTIR, UV-VIS, FESEM, EDX, AFM, XPS, and TGA and the response to acetone vapour at different concentrations in the range of 0.5 ppm to 5 ppm was measured at room temperature using SPR technique. The ternary composite-based SPR sensor showed good sensitivity and linearity towards acetone vapour in the range considered. It was determined that the sensor could detect acetone vapour down to 0.88 ppb with a sensitivity of 0.69 degree/ppm with a linearity correlation coefficient of 0.997 in the average SPR angular shift as a function of the acetone vapour concentration in air. The selectivity, repeatability, reversibility, and stability of the sensor were also studied. The acetone response was 87%, 94%, and 99% higher compared to common interfering volatile organic compounds such as propanol, methanol, and ethanol, respectively. The attained lowest detection limit (LOD) of 0.88 ppb confirms the potential for the utilisation of the sensor in the non-invasive monitoring and screening of diabetes.
  3. Adam AA, Ojur Dennis J, Al-Hadeethi Y, Mkawi EM, Abubakar Abdulkadir B, Usman F, et al.
    Polymers (Basel), 2020 Dec 01;12(12).
    PMID: 33271876 DOI: 10.3390/polym12122884
    Supercapacitors are energy storage devices with high power density, rapid charge/discharge rate, and excellent cycle stability. Carbon-based supercapacitors are increasingly attracting attention because of their large surface area and high porosity. Carbon-based materials research has been recently centered on biomass-based materials due to the rising need to maintain a sustainable environment. Cellulose and lignin constitute the major components of lignocellulose biomass. Since they are renewable, sustainable, and readily accessible, lignin and cellulose-based supercapacitors are economically viable and environmentally friendly. This review aims to systematically analyze published research findings on electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. A rigorous scientific approach was employed to screen the eligibility of relevant articles to be included in this study. The research questions and the inclusion criteria were clearly defined. The included articles were used to draw up the research framework and develop coherent taxonomy of literature. Taxonomy of research literature generated from the included articles was classified into review papers, electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. Furthermore, challenges, recommendations, and research directions for future studies were equally discussed extensively. Before this study, no review on electrospun lignin/cellulose nanofiber-based supercapacitors has been reported. Thus, this systematic review will provide a reference for other researchers interested in developing biomass-based supercapacitors as an alternative to conventional supercapacitors based on petroleum products.
  4. Usman F, Dennis JO, Mkawi EM, Al-Hadeethi Y, Meriaudeau F, Fen YW, et al.
    Polymers (Basel), 2020 Nov 04;12(11).
    PMID: 33158093 DOI: 10.3390/polym12112586
    To non-invasively monitor and screen for diabetes in patients, there is need to detect low concentration of acetone vapor in the range from 1.8 ppm to 5 ppm, which is the concentration range of acetone vapor in diabetic patients. This work presents an investigation for the utilization of chitosan-polyethylene glycol (PEG)-based surface plasmon resonance (SPR) sensor in the detection of trace concentration acetone vapor in the range of breath acetone in diabetic subjects. The structure, morphology, and elemental composition of the chitosan-PEG sensing layer were characterized using FTIR, UV-VIS, FESEM, EDX, AFM, and XPS methods. Response testing was conducted using low concentration of acetone vapor in the range of 0.5 ppm to 5 ppm using SPR technique. All the measurements were conducted at room temperature and 50 mL/min gas flow rate. The sensor showed good sensitivity, linearity, repeatability, reversibility, stability, and high affinity toward acetone vapor. The sensor also showed better selectivity to acetone compared to methanol, ethanol, and propanol vapors. More importantly, the lowest detection limit (LOD) of about 0.96 ppb confirmed the applicability of the sensor for the non-invasive monitoring and screening of diabetes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links