Displaying all 4 publications

Abstract:
Sort:
  1. Zhao L, Wu HY, Xie D, Mo LM, Yang FF, Gao Y, et al.
    Trop Biomed, 2023 Dec 01;40(4):439-443.
    PMID: 38308831 DOI: 10.47665/tb.40.4.009
    The study of children who experienced with febrile seizures(FS) as a result of COVID-19 infection to gain insight into the clinical characteristics and prognosis of neurological damage, with the aim of improving prevention, diagnosis, and the treatment of neurological complications. This study investigated the clinical features of 53 children with FS who were admitted to Sanya Women and Children's Hospital from December 1, 2022, to January 31, 2023. The results indicated that the duration of convulsion in the case and control group was 7.90±8.91 and 2.67±1.23 (minutes) respectively. The analysis reveals that convulsions occurred within 24 hours in 39 cases (95.12%) of the case group, and in 8 cases (66.7%) of the control group. The difference was statistically significant (P<0.05). Additionally, the case group presented lower counts of WBC and NEU compared to the control group (p<0.05). The findings indicate that convulsions manifest at earlier stages of COVID-19 in children and the last longer than in the control group. It is therefore crucial for healthcare workers to remain attentive to patients with COVID-19 who report fever within 24 hours, and act promptly to implement preventive measures, particularly in cases of prolonged fever. It is essential to integrate the clinical manifestation, particularly convulsions, and the continuous numerical changes of inflammatory factors to assess COVID-19 linked with febrile seizures. In addition, larger-scale multi-center and systematic research are necessary to aid clinicians in monitoring neuropathological signals and biological targets, enabling more equitable diagnosis and treatment plans.
  2. Zohner CM, Mo L, Renner SS, Svenning JC, Vitasse Y, Benito BM, et al.
    Proc Natl Acad Sci U S A, 2020 06 02;117(22):12192-12200.
    PMID: 32393624 DOI: 10.1073/pnas.1920816117
    Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.
  3. Mo L, Zohner CM, Reich PB, Liang J, de Miguel S, Nabuurs GJ, et al.
    Nature, 2023 Dec;624(7990):92-101.
    PMID: 37957399 DOI: 10.1038/s41586-023-06723-z
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
  4. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links