Chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles (CS-EGDE/TNP) composite was synthesized to be biosorbent for the removal of reactive orange 16 (RO16) dye from aqueous solution. The CS-EGDE/TNP composite was characterized via BET, XRD, FTIR, and SEM-EDX techniques. Response surface methodology (RSM) with Box-Behnken design (BBD) was applied to optimize the adsorption key parameters such as adsorbent dose (A: 0.02-0.08 g/L), RO16 dye concentration (B: 20-80 mg/L), solution pH (C: 4-10), temperature (D: 30-50 °C), and contact time (E: 30-90 min). The adsorption isotherm followed Freundlich model and pseudo-second order (PSO) kinetic model. The adsorption capacity of CS-EGDE/TNP for RO16 dye was 1407.4 mg/g at 40 °C. The adsorption mechanism of RO16 dye on the surface of CS-EGDE/TNP can be attributed to various interactions such as electrostatic attraction, n-π interaction, Yoshida H-bonding, and H-bonding. Results supported the potential use of CS-EGDE/TNP as effective adsorbent for the treatment of acid reactive dye.
A crosslinked chitosan-glyoxal/TiO2 nanocomposite (CCG/TNC) was synthesized by loading different ratios of TiO2 nanoparticles into polymeric matrix of crosslinked chitosan-glyoxal (CCG) to be a promising biosorbent for methyl orange (MO). Box-Behnken design (BBD) in response surface methodology (RSM) was applied to optimize various process parameters, viz., loading of TiO2 nanoparticles into CCG polymeric matrix (A: 0%-50%), adsorbent dose (B: 0.04-0.14 g/50 mL), solution pH (C: 4-10), and temperature (D: 30-50 °C). The highest MO removal efficiency of 75.9% was observed by simultaneous interactions between AB, AC, and BC. The optimum TiO2 loading, adsorbent dosage, solution pH, and temperature were (50% TiO2: 50% chitosan labeled as CCG/TNC-50), 0.09 g/50 mL, 4.0, and 40 °C. The adsorption of MO from aqueous solution by using CCG/TNC-50 in batch mode was evaluated. The kinetic results were well described by the pseudo-first order kinetic, and the equilibrium data were in agreement with Langmuir isotherm model with maximum adsorption capacity of 416.1 mg/g. The adsorption mechanism included electrostatic attractions, n-π stacking interactions, dipole-dipole hydrogen bonding interactions, and Yoshida H-bonding.
The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.