Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
The development of reliable and sensitive detection methods is essential for addressing the escalating concerns surrounding fish and fish products, driven by increasing market demands. This comprehensive review presents recent advances in detection approaches, specifically focusing on microplastic, biological, and chemical hazards associated with these products. The overview encompasses 21 distinct detection methods, categorized based on the type of hazard they target. For microplastic hazards, six methods are visual, spectroscopic, and thermal analyses. Biological hazard identification relies on six approaches employing nucleic-acid sequence, immunological, and biosensor technologies. The investigation of chemical hazards encompasses ten methods, including chromatography, spectroscopy, mass spectrometry, immunological, biosensor, and electrochemical techniques. The review provides in-depth insights into the basic principles, general characteristics, and the recognized advantages and disadvantages of each method. Moreover, it elaborates on recent advancements within these methodologies. The concluding section of the review discusses current challenges and outlines future perspectives for these detection methods. Overall, this comprehensive summary not only serves as a guide for researchers involved in fish safety and quality control but also emphasizes the significance of staying abreast of evolving detection technologies to ensure the continued safety of fish and fish products in response to emerging food safety hazards.
Morus alba L. (M. alba) is a highly adaptable plant that is extensively incorporated in many traditional and Ayurveda medications. Various parts of the plant, such as leaves, fruits, and seeds, possess nutritional and medicinal value. M. alba has abundant phytochemicals, including phenolic acids, flavonoids, flavonols, anthocyanins, macronutrients, vitamins, minerals, and volatile aromatic compounds, indicating its excellent pharmacological abilities. M. alba also contains high nutraceutical values for protein, carbohydrates, fiber, organic acids, vitamins, and minerals, as well as a low lipid value. However, despite its excellent biological properties and nutritional value, M. alba has not been fully considered as a potential functional food ingredient. Therefore, this review reports on the nutrients and bioactive compounds available in M. alba leaves, fruit, and seeds; its nutraceutical properties, functional properties as an ingredient in foodstuffs, and a microencapsulation technique to enhance polyphenol stability. Finally, as scaling up to a bigger production plant is needed to accommodate industrial demand, the study and limitation on an M. alba upscaling process is reviewed.
Contamination of marine fish with the widespread distribution of anthropogenic particles (APs) becomes increasingly severe, however, related research on the assessment of the occurrence of APs in the edible tissue of commercial fish is scarce. The objective of this study was to evaluate the features of APs pollution based on seven species of commercial marine fish (n = 12 per species) and investigate the accumulation of APs in different tissues of fish namely gill and gastrointestinal tract (GIT), and muscle. The results show that a total of 62 APs were detected in 33 out of 84 (39.3%) fresh fish samples using a micro-Raman spectrometer which in particular is characterized by a blue color, shape-like fiber, and size smaller than 0.5 mm. Among them, 47 (75.8%) particles were identified as pigments such as indigo, chrome yellow-orange, disperse yellow, and pigment black. The other 11 (17.7%) particles were plastic including polypropylene (PP), polyethylene terephthalate (PET), and polyacrylonitrile (PAN). And the rest 4 (6.5%) particles were anthropogenic cellulose fibers. Muscle tissue from six species of fish was detected to contain a total of 15 APs. Based on the total mean of APs found in fish muscle (0.018 AP items/g tissue) and on the consumption of fish in Malaysia (59 kg/capita/year), the estimated human intake of APs through fish consumption was 1062 AP items/year/capita. Considering that food consumption is an important route of human exposure to APs, it is suggested to add APs testing into the guidelines of food safety management systems and adopt mitigation measures to reduce the APs pollution in food.