Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
Nowadays, scourge of malaria as a fatalistic disease has increased due to emergence of drug resistance and tolerance among different strains of Plasmodium falciparum. Emergence of chloroquine (CQ) resistance has worsened the calamity as CQ is still considered the most efficient, safe and cost effective drug among other antimalarials. This urged the scientists to search for other alternatives or sensitizers that may be able to augment CQ action and reverse its resistance.
The potential of secondary metabolites extracted from Streptomyces sp. to treat bacterial infections including infections with Staphylococcus aureus is previously documented. The current study showed significant antimicrobial activities associated with endophytic Streptomyces sp. isolated from medicinal plants in Peninsular Malaysia.
Interleukin 18 (IL-18) exerts pleiotropic roles in many inflammatory-related diseases including parasitic infection. Previous studies have demonstrated the promising therapeutic potential of modulating IL-18 bioactivity in various pathological conditions. However, its involvement during malaria infection has yet to be established. In this study, we demonstrated the effect of modulating IL-18 on the histopathological conditions of malaria infected mice.