Displaying all 4 publications

Abstract:
Sort:
  1. Mohd-Padil H, Mohd-Adnan A, Gabaldón T
    Mol Biol Evol, 2013 Apr;30(4):894-905.
    PMID: 23258311 DOI: 10.1093/molbev/mss325
    Transferrin is a protein super-family involved in iron transport, a central process in cellular homeostasis. Throughout the evolution of vertebrates, transferrin members have diversified into distinct subfamilies including serotransferrin, ovotransferrin, lactoferrin, melanotransferrin, the inhibitor of carbonic anhydrase, pacifastin, and the major yolk protein in sea urchin. Previous phylogenetic analyses have established the branching order of the diverse transferrin subfamilies but were mostly focused on the transferrin repertoire present in mammals. Here, we conduct a comprehensive phylogenetic analysis of transferrin protein sequences in sequenced vertebrates, placing a special focus on the less-studied nonmammalian vertebrates. Our analyses uncover a novel transferrin clade present across fish, sauropsid, and amphibian genomes but strikingly absent from mammals. Our reconstructed scenario implies that this novel class emerged through a duplication event at the vertebrate ancestor, and that it was subsequently lost in the lineage leading to mammals. We detect footprints of accelerated evolution following the duplication event, which suggest positive selection and early functional divergence of this novel clade. Interestingly, the loss of this novel class of transferrin in mammals coincided with the divergence by duplication of lactoferrin and serotransferrin in this lineage. Altogether, our results provide novel insights on the evolution of iron-binding proteins in the various vertebrate groups.
  2. Mohd-Padil H, Tajul-Arifin K, Mohd-Adnan A
    PLoS One, 2010;5(10):e13159.
    PMID: 20949082 DOI: 10.1371/journal.pone.0013159
    β2-Microglobulin (β(2)M) is the light chain of major histocompatibility class I (MHC I) that binds non-covalently with the α heavy chain. Both proteins attach to the antigen peptide, presenting a complex to the T cell to be destroyed via the immune mechanism.
  3. Mohd-Padil H, Damiri N, Sulaiman S, Chai SF, Nathan S, Firdaus-Raih M
    Sci Rep, 2017 12 07;7(1):17173.
    PMID: 29215024 DOI: 10.1038/s41598-017-17356-4
    The Burkholderia genus includes many species that are known to survive in diverse environmental conditions including low nutrient environments. One species, Burkholderia pseudomallei is a versatile pathogen that can survive in a wide range of hosts and environmental conditions. In this study, we investigated how a nutrient depleted growth environment evokes sRNA mediated responses by B. pseudomallei. Computationally predicted B. pseudomallei D286 sRNAs were mapped to RNA-sequencing data for cultures grown under two conditions: (1) BHIB as a nutrient rich media reference environment and (2) M9 media as a nutrient depleted stress environment. The sRNAs were further selected to identify potentially cis-encoded systems by investigating their possible interactions with their flanking genes. The mappings of predicted sRNA genes and interactions analysis to their flanking genes identified 12 sRNA candidates that may possibly have cis-acting regulatory roles that are associated to a nutrient depleted growth environment. Our approach can be used for identifying novel sRNA genes and their possible role as cis-mediated regulatory systems.
  4. Kumaran SK, Bakar MFA, Mohd-Padil H, Mat-Sharani S, Sakinah S, Poorani K, et al.
    Acta Trop, 2017 Dec;176:433-439.
    PMID: 28941729 DOI: 10.1016/j.actatropica.2017.09.011
    Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species (Leptospiraceae). LipL32 is an abundant lipoprotein from the outer membrane proteins (OMPs) group, highly conserved among pathogenic and intermediate Leptospira species. Several studies used LipL32 as a specific gene to identify the presence of leptospires. This research was aimed to study the characteristics of LipL32 protein gene code, to fill the knowledge gap concerning the most appropriate gene that can be used as antigen to detect the Leptospira. Here, we investigated the features of LipL32 in fourteen Leptospira pathogenic strains based on comparative analyses of their primary, secondary structures and 3D modeling using a bioinformatics approach. Furthermore, the physicochemical properties of LipL32 in different strains were studied, shedding light on the identity of signal peptides, as well as on the secondary and tertiary structure of the LipL32 protein, supported by 3D modelling assays. The results showed that the LipL32 gene was present in all the fourteen pathogenic Leptospira strains used in this study, with limited diversity in terms of sequence conservation, hydrophobic group, hydrophilic group and number of turns (random coil). Overall, these results add basic knowledge to the characteristics of LipL32 protein, contributing to the identification of potential antigen candidates in future research, in order to ensure prompt and reliable detection of pathogenic Leptospira species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links