Displaying all 6 publications

Abstract:
Sort:
  1. Rosenthal VD, Richtmann R, Singh S, Apisarnthanarak A, Kübler A, Viet-Hung N, et al.
    Infect Control Hosp Epidemiol, 2013 Jun;34(6):597-604.
    PMID: 23651890 DOI: 10.1086/670626
     To report the results of a surveillance study on surgical site infections (SSIs) conducted by the International Nosocomial Infection Control Consortium (INICC).
  2. Solante R, Alvarez-Moreno C, Burhan E, Chariyalertsak S, Chiu NC, Chuenkitmongkol S, et al.
    Expert Rev Vaccines, 2023;22(1):1-16.
    PMID: 36330971 DOI: 10.1080/14760584.2023.2143347
    INTRODUCTION: COVID-19 vaccines have been highly effective in reducing morbidity and mortality during the pandemic. However, the emergence of the Omicron variant and subvariants as the globally dominant strains have raised doubts about the effectiveness of currently available vaccines and prompted debate about potential future vaccination strategies.

    AREAS COVERED: Using the publicly available IVAC VIEW-hub platform, we reviewed 52 studies on vaccine effectiveness (VE) after booster vaccinations. VE were reported for SARS-CoV-2 symptomatic infection, severe disease and death and stratified by vaccine schedule and age. In addition, a non-systematic literature review of safety was performed to identify single or multi-country studies investigating adverse event rates for at least two of the currently available COVID-19 vaccines.

    EXPERT OPINION: Booster shots of the current COVID-19 vaccines provide consistently high protection against Omicron-related severe disease and death. Additionally, this protection appears to be conserved for at least 3 months, with a small but significant waning after that. The positive risk-benefit ratio of these vaccines is well established, giving us confidence to administer additional doses as required. Future vaccination strategies will likely include a combination of schedules based on risk profile, as overly frequent boosting may be neither beneficial nor sustainable for the general population.

  3. Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H, Memish ZA, Al-Mousa HH, et al.
    Am J Infect Control, 2014 09;42(9):942-56.
    PMID: 25179325 DOI: 10.1016/j.ajic.2014.05.029
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line-associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN.
  4. Rosenthal VD, Al-Abdely HM, El-Kholy AA, AlKhawaja SAA, Leblebicioglu H, Mehta Y, et al.
    Am J Infect Control, 2016 12 01;44(12):1495-1504.
    PMID: 27742143 DOI: 10.1016/j.ajic.2016.08.007
    BACKGROUND: We report the results of International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2010-December 2015 in 703 intensive care units (ICUs) in Latin America, Europe, Eastern Mediterranean, Southeast Asia, and Western Pacific.

    METHODS: During the 6-year study period, using Centers for Disease Control and Prevention National Healthcare Safety Network (CDC-NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 861,284 patients hospitalized in INICC hospital ICUs for an aggregate of 3,506,562 days.

    RESULTS: Although device use in INICC ICUs was similar to that reported from CDC-NHSN ICUs, DA-HAI rates were higher in the INICC ICUs: in the INICC medical-surgical ICUs, the pooled rate of central line-associated bloodstream infection, 4.1 per 1,000 central line-days, was nearly 5-fold higher than the 0.8 per 1,000 central line-days reported from comparable US ICUs, the overall rate of ventilator-associated pneumonia was also higher, 13.1 versus 0.9 per 1,000 ventilator-days, as was the rate of catheter-associated urinary tract infection, 5.07 versus 1.7 per 1,000 catheter-days. From blood cultures samples, frequencies of resistance of Pseudomonas isolates to amikacin (29.87% vs 10%) and to imipenem (44.3% vs 26.1%), and of Klebsiella pneumoniae isolates to ceftazidime (73.2% vs 28.8%) and to imipenem (43.27% vs 12.8%) were also higher in the INICC ICUs compared with CDC-NHSN ICUs.

    CONCLUSIONS: Although DA-HAIs in INICC ICU patients continue to be higher than the rates reported in CDC-NSHN ICUs representing the developed world, we have observed a significant trend toward the reduction of DA-HAI rates in INICC ICUs as shown in each international report. It is INICC's main goal to continue facilitating education, training, and basic and cost-effective tools and resources, such as standardized forms and an online platform, to tackle this problem effectively and systematically.

  5. Zhang H, Targher G, Byrne CD, Kim SU, Wong VW, Valenti L, et al.
    Hepatol Int, 2024 Aug;18(4):1178-1201.
    PMID: 38878111 DOI: 10.1007/s12072-024-10702-5
    BACKGROUND: With the implementation of the 11th edition of the International Classification of Diseases (ICD-11) and the publication of the metabolic dysfunction-associated fatty liver disease (MAFLD) nomenclature in 2020, it is important to establish consensus for the coding of MAFLD in ICD-11. This will inform subsequent revisions of ICD-11.

    METHODS: Using the Qualtrics XM and WJX platforms, questionnaires were sent online to MAFLD-ICD-11 coding collaborators, authors of papers, and relevant association members.

    RESULTS: A total of 890 international experts in various fields from 61 countries responded to the survey. We also achieved full coverage of provincial-level administrative regions in China. 77.1% of respondents agreed that MAFLD should be represented in ICD-11 by updating NAFLD, with no significant regional differences (77.3% in Asia and 76.6% in non-Asia, p = 0.819). Over 80% of respondents agreed or somewhat agreed with the need to assign specific codes for progressive stages of MAFLD (i.e. steatohepatitis) (92.2%), MAFLD combined with comorbidities (84.1%), or MAFLD subtypes (i.e., lean, overweight/obese, and diabetic) (86.1%).

    CONCLUSIONS: This global survey by a collaborative panel of clinical, coding, health management and policy experts, indicates agreement that MAFLD should be coded in ICD-11. The data serves as a foundation for corresponding adjustments in the ICD-11 revision.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links