Displaying all 13 publications

Abstract:
Sort:
  1. Khor KZ, Lim V, Moses EJ, Abdul Samad N
    PMID: 30538753 DOI: 10.1155/2018/1071243
    Moringa oleifera, a fast-growing deciduous tree that is widely cultivated in tropical and subtropical regions of the world, is well known for its abundant uses. The tree is a source of food, shelter, and traditional medicine for many people, especially in developing countries. Many studies have been conducted to evaluate the various claims of traditional medicine practitioners that the moringa tree can improve health and treat various diseases. The tree has a high nutritional profile, especially the nutrient rich leaves. Some reports also support the use of parts of the tree to reduce blood sugar and cholesterol levels. These attractive properties have led researchers to look for other novel uses for the moringa tree, especially as a source of anticancer drugs. Researchers have tested extracts from various parts of the moringa tree both in vitro and in vivo on several types of cancers with varying success. This review explores the state of current research on the anticancer properties of M. oleifera.
  2. Bashanfer SAA, Saleem M, Heidenreich O, Moses EJ, Yusoff NM
    Oncol Rep, 2019 Mar;41(3):2027-2040.
    PMID: 30569130 DOI: 10.3892/or.2018.6926
    The t(8;21) translocation is one of the most frequent chromosome abnormalities associated with acute myeloid leukaemia (AML). This abberation deregulates numerous molecular pathways including the ERK signalling pathway among others. Therefore, the aim of the present study was to investigate the gene expression patterns following siRNA‑mediated suppression of RUNX1‑RUNX1T1 and MAPK1 in Kasumi‑1 and SKNO‑1 cells and to determine the differentially expressed genes in enriched biological pathways. BeadChip microarray and gene ontology analysis revealed that RUNX1‑RUNX1T1 and MAPK1 suppression reduced the proliferation rate of the t(8;21) cells with deregulated expression of several classical positive regulator genes that are otherwise known to enhance cell proliferation. RUNX1‑RUNX1T1 suppression exerted an anti‑apoptotic effect through the overexpression of BCL2, BIRC3 and CFLAR genes, while MAPK1 suppression induced apopotosis in t(8;21) cells by the apoptotic mitochondrial changes stimulated by the activity of upregulated TP53 and TNFSF10, and downregulated JUN gene. RUNX1‑RUNX1T1 suppression supported myeloid differentiation by the differential expression of CEBPA, CEBPE, ID2, JMJD6, IKZF1, CBFB, KIT and CDK6, while MAPK1 depletion inhibited the differentiation of t(8;21) cells by elevated expression of ADA and downregulation of JUN. RUNX1‑RUNX1T1 and MAPK1 depletion induced cell cycle arrest at the G0/G1 phase. Accumulation of cells in the G1 phase was largely the result of downregulated expression of TBRG4, CCNE2, FOXO4, CDK6, ING4, IL8, MAD2L1 and CCNG2 in the case of RUNX1‑RUNX1T1 depletion and increased expression of RASSF1, FBXO6, DADD45A and P53 in the case of MAPK1 depletion. Taken together, the current results demonstrate that MAPK1 promotes myeloid cell proliferation and differentiation simultaneously by cell cycle progression while suppresing apoptosis.
  3. Joseph J, Khor KZ, Moses EJ, Lim V, Aziz MY, Abdul Samad N
    Int J Nanomedicine, 2021;16:3599-3612.
    PMID: 34079252 DOI: 10.2147/IJN.S303921
    Purpose: Vernonia amygdalina (VA) is a traditional African herbal medicine that has been reported to possess anticancer properties. However, the anticancer properties of VA silver nanoparticles have not been studied. The aim of the study was to examine and evaluate the anticancer activities of VA leaf extracts and VA silver nanoparticles on the human breast cancer cell line, MCF-7.

    Methods: VA leaves were extracted using sequential extraction assisted with ultrasound using three different solvents: ethanol, 50% ethanol, and deionized water. The silver nanoparticles were synthesised with VA aqueous extract.

    Results: The ethanol extract and VA silver nanoparticles inhibit MCF-7 cell proliferation with an average half-maximal inhibitory concentration (IC50) value of 67µg/mL and 6.11µg/mL, respectively, after 72 hours of treatment. The ethanol extract and VA silver nanoparticles also caused G1 phase cell cycle arrest, induced apoptosis and nuclear fragmentation in MCF-7 cells.

    Conclusion: VA ethanol extracts and VA silver nanoparticles decreased the cell viability in MCF-7 cells in a time and dose-dependent manner by inducing apoptosis and causing DNA damage. Further research is needed to elucidate the mechanism of action of VA leaf extracts and VA silver nanoparticles. This study is the first to report on the anticancer activity of VA silver nanoparticles in MCF-7 cells.

  4. Rajasegaran Y, Azlan A, Rosli AA, Yik MY, Kang Zi K, Yusoff NM, et al.
    Biomedicines, 2021 Oct 19;9(10).
    PMID: 34680611 DOI: 10.3390/biomedicines9101494
    MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
  5. Yik MY, Azlan A, Rajasegaran Y, Rosli A, Yusoff NM, Moses EJ
    Genes (Basel), 2021 07 30;12(8).
    PMID: 34440361 DOI: 10.3390/genes12081188
    The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
  6. Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, et al.
    Front Genet, 2021;12:767298.
    PMID: 35154242 DOI: 10.3389/fgene.2021.767298
    Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
  7. Mot YY, Moses EJ, Mohd Yusoff N, Ling KH, Yong YK, Tan JJ
    Cell Mol Neurobiol, 2023 Mar;43(2):469-489.
    PMID: 35103872 DOI: 10.1007/s10571-022-01201-y
    Traumatic brain injury (TBI) could result in life-long disabilities and death. Though the mechanical insult causes primary injury, the secondary injury due to dysregulated responses following neuronal apoptosis and inflammation is often the cause for more detrimental consequences. Mesenchymal stromal cell (MSC) has been extensively investigated as the emerging therapeutic for TBI, and the functional properties are chiefly attributed to their secretome, especially the exosomes. Delivering these nanosize exosomes have shown to ameliorate post-traumatic injury and restore brain functions. Recent technology advances also allow engineering MSC-derived exosomes to carry specific biomolecules of interest to augment their therapeutic outcome. In this review, we discuss the pathophysiology of TBI and summarize the recent progress in the applications of MSCs-derived exosomes, the roles and the signalling mechanisms underlying the protective effects in the treatment of the TBI.
  8. Algariri ES, Mydin RBSMN, Moses EJ, Okekpa SI, Rahim NAA, Yusoff NM
    Turk J Haematol, 2023 Feb 28;40(1):11-17.
    PMID: 36404683 DOI: 10.4274/tjh.galenos.2022.2022.0246
    OBJECTIVE: This study aimed to investigate the role of the stromal interaction molecule 1 (STIM1) gene in the survival of the acute myeloblastic leukemia (AML)-M5 cell line (THP-1).

    MATERIALS AND METHODS: The STIM1 effect was assessed via dicersubstrate siRNA-mediated STIM1 knockdown. The effect of STIM1 knockdown on the expression of AKT and MAPK pathway-related genes and reactive oxygen species (ROS) generation-related genes was tested using real-time polymerase chain reaction. Cellular functions, including ROS generation, cell proliferation, and colony formation, were also evaluated following STIM1 knockdown.

    RESULTS: The findings revealed that STIM1 knockdown reduced intracellular ROS levels via downregulation of NOX2 and PKC. These findings were associated with the downregulation of AKT, KRAS, MAPK, and CMYC. BCL2 was also downregulated, while BAX was upregulated following STIM1 knockdown. Furthermore, STIM1 knockdown reduced THP-1 cell proliferation and colony formation.

    CONCLUSION: This study has demonstrated the role of STIM1 in promoting AML cell proliferation and survival through enhanced ROS generation and regulation of AKT/MAPK-related pathways. These findings may help establish STIM1 as a potential therapeutic target for AML treatment.

  9. Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, et al.
    Clin Exp Med, 2023 Aug;23(4):1137-1159.
    PMID: 36229751 DOI: 10.1007/s10238-022-00913-1
    Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
  10. Azlan A, Khor KZ, Rajasegaran Y, Rosli AA, Said MSM, Yusoff NM, et al.
    Med Oncol, 2023 Jun 21;40(7):208.
    PMID: 37341821 DOI: 10.1007/s12032-023-02075-w
    Reactive oxygen species (ROS) homeostasis is crucial for leukaemogenesisand deregulation would hamper leukaemic progression. Although the regulatory effects of RUNX1/ETO has been extensively studied, its underlying molecular mechanims in ROS production in t(8,21) AML is yet to be fully elucidated. Here, we report that RUNX1/ETO could directly control FLT3 by occupying several DNA elements on FLT3 locus. The possible hijacking mechanism by RUNX1/ETO over FLT3 mediated ROS modulation in AML t(8;21) was made apparent when suppression of RUNX1/ETO led to decrement in ROS levels and the direct oxidative marker FOXO3 but not in FLT3 and RAC1 suppressed t(8,21) AML cell line Furthermore, nuclear import of RUNX1/ETO was aberrated following RUNX1/ETO and RAC1 suppression suggesting association in ROS control. A different picture was depicted in non t(8;21) cells where suppression of RAC1 and FLT3 led to decreased levels of FOXO3a and ROS. Results alltogether indicate a possible dysregulation of ROS levels by RUNX1/ETO in t(8,21) AML.
  11. Lavinya AA, Razali RA, Razak MA, Mohamed R, Moses EJ, Soundararajan M, et al.
    Haematologica, 2021 06 01;106(6):1758-1761.
    PMID: 33179475 DOI: 10.3324/haematol.2020.268581
    Not available.
  12. Moses EJ, Azlan A, Khor KZ, Mot YY, Mohamed S, Seeni A, et al.
    Cell Mol Life Sci, 2023 Feb 23;80(3):70.
    PMID: 36820913 DOI: 10.1007/s00018-023-04713-y
    The fusion oncoprotein RUNX1/ETO which results from the chromosomal translocation t (8;21) in acute myeloid leukemia (AML) is an essential driver of leukemic maintenance. We have previously shown that RUNX1/ETO knockdown impairs expression of the protein component of telomerase, TERT. However, the underlying molecular mechanism of how RUNX1/ETO controls TERT expression has not been fully elucidated. Here we show that RUNX1/ETO binds to an intergenic region 18 kb upstream of the TERT transcriptional start site and to a site located in intron 6 of TERT. Loss of RUNX1/ETO binding precedes inhibition of TERT expression. Repression of TERT expression is also dependent on the destabilization of the E3 ubiquitin ligase SKP2 and the resultant accumulation of the cell cycle inhibitor CDKN1B, that are both associated with RUNX1/ETO knockdown. Increased CDKN1B protein levels ultimately diminished TERT transcription with E2F1/Rb involvement. Collectively, our results show that RUNX1/ETO controls TERT expression directly by binding to its locus and indirectly via a SKP2-CDKN1B-E2F1/Rb axis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links