METHODS: Eight cyclists exercised at three submaximal intensities before completing a TTE100% at sea-level (SEA) and at 1657 m of altitude (ALT), with pre-exercise consumption of 1000 mg of POMx or a placebo (PLAC) in a randomized, double-blind, crossover design. Data were analysed using a three way (treatment x altitude x intensity) or two-way (treatment x altitude) repeated measures ANOVA with a Fisher's LSD post-hoc analysis. Significance was set at p ≤ 0.05. The effect size of significant interactions was calculated using Cohen's d.
RESULTS: TTE100% performance was reduced in ALT but was not influenced by POMx (p > 0.05). Plasma NO3- were 10.3 μmol greater with POMx vs. PLAC (95% CI, 0.8, 19.7,F1,7 = 7.83, p 0.05). Submaximal VO2 values were not affected by POMx (p ≥ 0.05).
CONCLUSIONS: The restoration of SEA VO2 values at ALT is likely driven by the high polyphenol content of POMx, which is proposed to improve nitric oxide bioavailability. Despite an increase in VO2, no change in exercise performance occurred and therefore this study does not support the use of POMx as an ergogenic supplement.
METHODS: In a double blind, randomised crossover design, 12 well-trained male runners completed 4 running time to exhaustion (TTE) trials at a speed equivalent to 70% of VO2peak in a thermoneutral condition. Throughout each run, participants mouth rinsed and expectorated every 15 min either 25 mL of 6% CHO or a placebo (PLA) solution for 10 s. The four TTEs consisted of two trials in the euhydrated (EU-CHO and EU-PLA) and two trials in the dehydrated (DY-CHO and DY-PLA) state. Prior to each TTE run, participants were dehydrated via exercise and allowed a passive rest period during which they were fed and either rehydrated equivalent to their body mass deficit (i.e., EU trials) or ingested only 50 mL of water (DY trials).
RESULTS: CHO mouth rinsing significantly improved TTE performance in the DY compared to the EU trials (78.2 ± 4.3 vs. 76.9 ± 3.8 min, P = 0.02). The arousal level of the runners was significantly higher in the DY compared to the EU trials (P = 0.02). There was no significant difference among trials in heart rate, plasma glucose and lactate, and psychological measures.
CONCLUSIONS: CHO mouth rinsing enhanced running performance significantly more when participants were dehydrated vs. euhydrated due to the greater sensitivity of oral receptors related to thirst and central mediated activation. These results show that level of dehydration alters the effect of brain perception with presence of CHO.
METHOD: Twelve endurance male runners [age 25 ± 3 years; peak aerobic capacity ([Formula: see text]O2peak) 57.6 ± 3.6 mL.kg-1.min-1] completed three time-to-exhaustion (TTE) trials at ~ 70% [Formula: see text]O2peak while swilling 25 ml of a 6% carbohydrate (CHO) or taste-matched placebo (PLA) as well as no mouth rinse performed in the control (CON) trial.
RESULTS: TTE performance was significantly longer in both CHO and PLA trials when compared with the CON trial (54.7 ± 5.4 and 53.6 ± 5.1 vs. 48.4 ± 3.6 min, respectively; p 0.05). Similarly, plasma lactate and glucose as well as exercise heart rate were not influenced by the trials.
CONCLUSIONS: The present study demonstrates that mouth rinsing, whether carbohydrate or placebo, provides an ergogenic benefit to running endurance when compared to CON in a heat stress environment. Nevertheless, the results do not support the notion that rinsing a carbohydrate solution provides a greater advantage as previously described among non-heat acclimated individuals within a temperate condition.
METHODS: Fourteen trained male cyclists (age: 32 ± 12 year; height: 178 ± 6 cm; mass: 76 ± 9 kg; [Formula: see text]: 59 ± 9 mL kg-1 min-1; body surface area: 1.93 ± 0.12 m2; peak power output: 393 ± 53 W) volunteered, and underwent 1 exercise bout in moderate heat (MOD: 34.9 ± 0.2 °C, 50.1 ± 1.1% relative humidity) and 1 in mild heat (MILD: 29.2 ± 0.2 °C, 69.4 ± 0.9% relative humidity) matched for vapor pressure (2.8 ± 0.1 kPa), with trials counterbalanced.
RESULTS: Despite a higher weighted mean skin temperature during MOD (36.3 ± 0.5 vs. 34.5 ± 0.6 °C, p