Displaying all 6 publications

Abstract:
Sort:
  1. Elendran S, Muniyandy S, Lee WW, Palanisamy UD
    Food Funct, 2019 Feb 20;10(2):602-615.
    PMID: 30566155 DOI: 10.1039/c8fo01927d
    Ellagitannins, found abundantly in berries, pomegranates, walnuts and almonds, have been increasingly investigated for their health benefits. Geraniin (GE), an ellagitannin, found predominantly in herbal plants, as well has been shown to exhibit a number of biological activities. Like many hydrolysable tannins, geraniin is water-soluble and readily undergoes hydrolysis in the presence of hot water, weak acids and weak bases to yield several metabolites including corilagin (CO), ellagic acid (EA) and gallic acid (GA). There are numerous studies on the pharmacological effectiveness of GE, CO and GA. However, the intestinal permeability of GE and CO has never been investigated before. Caco-2 cell transport assay was utilized to evaluate the in vitro permeability of GE and its metabolites. GE, CO and EA were found to have no apparent permeability (Papp) while GA displayed a Papp value of 31.3 ± 1.1 × 10-6 cm s-1. Mass balance studies showed a loss of geraniin and its metabolites during transport. Chemical stability studies in the transport buffers revealed that GE and CO were hydrolyzed in the HBSS buffers. Experiments using lysed cells revealed that GE and its metabolites were metabolized during transport. Absorption and desorption studies confirmed the accumulation of EA inside the cells. The above results indicate that the compounds have poor oral absorption. To consider these compounds or their natural extracts as oral nutraceutical candidates, formulation strategies are mandatory.
  2. Sundralingam U, Chakravarthi S, Radhakrishnan AK, Muniyandy S, Palanisamy UD
    Pharmaceutics, 2020 Aug 25;12(9).
    PMID: 32854385 DOI: 10.3390/pharmaceutics12090807
    Oral tamoxifen used in the prevention and treatment of ductal carcinoma in situ (DCIS) (estrogen-positive) patients has limited acceptance, due to its adverse side effects. The efficacy of tamoxifen is related to its major metabolite, 4-hydroxytamoxifen. Local transdermal therapy of 4-hydroxytamoxifen to the breast might avert the toxicity of oral tamoxifen, while maintaining efficacy. We aim to study the skin irritancy, as well as to evaluate the efficacy of the developed transfersome formulations, with/without emu oil, using a syngeneic mouse model of breast cancer. We also quantified tamoxifen/4-hydroxytamoxifen concentrations in blood plasma and performed histopathology. The skin irritancy test showed that the pure emu oil and transfersome formulations with or without the emu oil did not cause skin irritancy in the animals studied. A sensitive and specific LC-MS/MS method for the quantification of tamoxifen and 4-hydroxytamoxifen was developed and validated. Studies on tumor volume and necrosis (histopathology) using the breast cancer mouse model showed that the 4-OHT transfersomal formulations, with and without emu oil, showed comparable efficacy with that of orally administered tamoxifen. However, the transfersomal formulations, with and without emu oil, resulted in significantly lower (10.24 ± 0.07 and 32.45 ± 0.48 ng/mL, respectively) plasma concentrations of 4-hydroxytamoxifen, compared to the oral tamoxifen (TAMX) group (634.42 ± 7.54 ng/mL). This study demonstrated the potential use of emu oil in a local transdermal formulation for the treatment of breast cancer and its reduced adverse effects.
  3. Sundralingam U, Khan TM, Elendran S, Muniyandy S, Palanisamy UD
    Pak J Pharm Sci, 2019 May;32(3):1121-1128.
    PMID: 31278729
    There has been a number of studies looking into an alternative mode of therapy for the treament of breast cancer via 4-hydroxytamoxifen (4-OHT) transdermal administration.This systematic review aims to compare the safety and efficacy of a transdermal 4-OHT local therapy and oral tamoxifen (oral-T) on the treatment of ductal carcinoma in situ breast cancer. Through a systematic search of health science databases, eligible trials were located and the end points assessed were Ki-67 labeling index, concentration of 4-OHT in breast adipose tissue (ng/g) and plasma (ng/ml). Revman 5.3 version was used to perfom the meta-analysis. Three trials were identified (n=103), while only two were included for meta analysis. The mean difference between the two studies included were 0.40 and -10.58. Overall the I2 value was 89.0%, (Tau2 =53.86) and the differences between the two trials were statistically significant p=0.002. The meta analysis of the randomized controlled trials showed that the use of local transdermal therapy of 4-OHT gel is more safer than oral-T. However, due to the limited number of studies, the potential use of 4-OHT topical transdermal therapy for the treatment of breast cancer could not be concluded for healthcare professionals.
  4. Sundralingam U, Muniyandy S, Radhakrishnan AK, Palanisamy UD
    J Liposome Res, 2021 Sep;31(3):217-229.
    PMID: 32648792 DOI: 10.1080/08982104.2020.1777155
    The anti-inflammatory property of ratite oils as well as its ability to act as a penetration enhancer makes it an ideal agent to be used in transdermal formulations. The present study aims to develop an effective transfersomal delivery of 4-hydroxytamoxifen (4-OHT), an anti-cancer drug, using ratite oil as a carrier agent for the treatment of breast cancer (BC). The 4-OHT transfersomes were prepared with and without ratite oils using soy phosphatidylcholine and three different edge activators (EAs) in five different molar ratios using the rotary evaporation-ultrasonication method. Optimal transfersome formulations were selected using physical-chemical characterization and ex vivo studies. Results from physical-chemical characterization of the developed formulations found sodium taurocholate to be the most suitable EA, which recorded highest entrapment efficiency of 95.1 ± 2.70% with 85:15, (w/w) and lowest vesicle size of 82.3 ± 0.02 nm with 75:25, (w/w) molar ratios. TEM and DSC studies showed that the vesicles were readily identified and present in a nearly perfect spherical shape. In addition, formulations with emu oil had better stability than formulations with ostrich oil. Physical stability studies at 4 °C showed that ratite oil transfersomes were stable up to 4 weeks, while transfersomes without ratite oils were stable for 8 weeks. Ex vivo permeability studies using porcine skin concluded that 4-OHT transfersomal formulations with (85:15, w/w) without emu oil have the potential to be used in transdermal delivery approach to enhance permeation of 4-OHT, which may be beneficial in the treatment of BC.
  5. De Silva L, Fu JY, Htar TT, Muniyandy S, Kasbollah A, Wan Kamal WHB, et al.
    Int J Nanomedicine, 2019;14:1101-1117.
    PMID: 30863048 DOI: 10.2147/IJN.S184912
    Background and purpose: Niosomes are nonionic surfactant-based vesicles that exhibit certain unique features which make them favorable nanocarriers for sustained drug delivery in cancer therapy. Biodistribution studies are critical in assessing if a nanocarrier system has preferential accumulation in a tumor by enhanced permeability and retention effect. Radiolabeling of nanocarriers with radioisotopes such as Technetium-99m (99mTc) will allow for the tracking of the nanocarrier noninvasively via nuclear imaging. The purpose of this study was to formulate, characterize, and optimize 99mTc-labeled niosomes.

    Methods: Niosomes were prepared from a mixture of sorbitan monostearate 60, cholesterol, and synthesized D-α-tocopherol polyethylene glycol 1000 succinate-diethylenetriaminepentaacetic acid (synthesis confirmed by 1H and 13C nuclear magnetic resonance spectroscopy). Niosomes were radiolabeled by surface chelation with reduced 99mTc. Parameters affecting the radiolabeling efficiency such as concentration of stannous chloride (SnCl2·H2O), pH, and incubation time were evaluated. In vitro stability of radiolabeled niosomes was studied in 0.9% saline and human serum at 37°C for up to 8 hours.

    Results: Niosomes had an average particle size of 110.2±0.7 nm, polydispersity index of 0.229±0.008, and zeta potential of -64.8±1.2 mV. Experimental data revealed that 30 µg/mL of SnCl2·H2O was the optimal concentration of reducing agent required for the radiolabeling process. The pH and incubation time required to obtain high radiolabeling efficiency was pH 5 and 15 minutes, respectively. 99mTc-labeled niosomes exhibited high radiolabeling efficiency (>90%) and showed good in vitro stability for up to 8 hours.

    Conclusion: To our knowledge, this is the first study published on the surface chelation of niosomes with 99mTc. The formulated 99mTc-labeled niosomes possessed high radiolabeling efficacy, good stability in vitro, and show good promise for potential use in nuclear imaging in the future.

  6. De Silva L, Fu JY, Htar TT, Wan Kamal WHB, Kasbollah A, Muniyandy S, et al.
    Front Pharmacol, 2021;12:778396.
    PMID: 35069200 DOI: 10.3389/fphar.2021.778396
    The purpose of this work was to study the biodistribution of niosomes in tumor-implanted BALB/c mice using gamma scintigraphy. Niosomes were first formulated and characterized, then radiolabeled with Technetium-99 m (99mTc). The biodistribution of 99mTc-labeled niosomes was evaluated in tumor-bearing mice through intravenous injection and imaged with gamma scintigraphy. The labeled complexes possessed high radiolabeling efficiency (98.08%) and were stable in vitro (>80% after 8 h). Scintigraphic imaging showed negligible accumulation in the stomach and thyroid, indicating minimal leaching of the radiolabel in vivo. Radioactivity was found mainly in the liver, spleen and kidneys. Tumor-to-muscle ratio indicated a higher specificity of the formulation for the tumor area. Overall, the formulated niosomes are stable both in vitro and in vivo, and show preferential tumor accumulation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links