Displaying all 12 publications

Abstract:
Sort:
  1. Jamlos MA, Jamlos MF, Alias A, Karim MSA, Mustafa WA, Akkaraekthalin P
    Polymers (Basel), 2021 Sep 24;13(19).
    PMID: 34641072 DOI: 10.3390/polym13193254
    This paper investigates the use of a Magnetite Polydimethylsiloxane (PDMS) Graphene array sensor in ultra-wide band (UWB) spectrum for microwave imaging applications operated within 4.0-8.0 GHz. The proposed array microwave sensor comprises a Graphene array radiating patch, as well as ground and transmission lines with a substrate of Magnetite PDMS-Ferrite, which is fed by 50 Ω coaxial ports. The Magnetite PDMS substrate associated with low permittivity and low loss tangent realized bandwidth enhancement and the high conductivity of graphene, contributing to a high gain of the UWB array antenna. The combination of 30% (ferrite) and 70% (PDMS) as the sensor's substrate resulted in low permittivity as well as a low loss tangent of 2.6 and 0.01, respectively. The sensor radiated within the UWB band frequency of 2.2-11.2 (GHz) with great energy emitted in the range of 3.5-15.7 dB. Maximum energy of 15.7 dB with 90 × 45 (mm) in small size realized the integration of the sensor for a microwave detection system. The material components of sensor could be implemented for solar panel.
  2. Alsalatie M, Alquran H, Mustafa WA, Mohd Yacob Y, Ali Alayed A
    Diagnostics (Basel), 2022 Nov 10;12(11).
    PMID: 36428816 DOI: 10.3390/diagnostics12112756
    The fourth most prevalent cancer in women is cervical cancer, and early detection is crucial for effective treatment and prognostic prediction. Conventional cervical cancer screening and classifying methods are less reliable and accurate as they heavily rely on the expertise of a pathologist. As such, colposcopy is an essential part of preventing cervical cancer. Computer-assisted diagnosis is essential for expanding cervical cancer screening because visual screening results in misdiagnosis and low diagnostic effectiveness due to doctors' increased workloads. Classifying a single cervical cell will overwhelm the physicians, in addition to the existence of overlap between cervical cells, which needs efficient algorithms to separate each cell individually. Focusing on the whole image is the best way and an easy task for the diagnosis. Therefore, looking for new methods to diagnose the whole image is necessary and more accurate. However, existing recognition algorithms do not work well for whole-slide image (WSI) analysis, failing to generalize for different stains and imaging, and displaying subpar clinical-level verification. This paper describes the design of a full ensemble deep learning model for the automatic diagnosis of the WSI. The proposed network discriminates between four classes with high accuracy, reaching up to 99.6%. This work is distinct from existing research in terms of simplicity, accuracy, and speed. It focuses on the whole staining slice image, not on a single cell. The designed deep learning structure considers the slice image with overlapping and non-overlapping cervical cells.
  3. Qasmieh IA, Alquran H, Zyout A, Al-Issa Y, Mustafa WA, Alsalatie M
    Diagnostics (Basel), 2022 Dec 17;12(12).
    PMID: 36553211 DOI: 10.3390/diagnostics12123204
    A corneal ulcers are one of the most common eye diseases. They come from various infections, such as bacteria, viruses, or parasites. They may lead to ocular morbidity and visual disability. Therefore, early detection can reduce the probability of reaching the visually impaired. One of the most common techniques exploited for corneal ulcer screening is slit-lamp images. This paper proposes two highly accurate automated systems to localize the corneal ulcer region. The designed approaches are image processing techniques with Hough transform and deep learning approaches. The two methods are validated and tested on the publicly available SUSTech-SYSU database. The accuracy is evaluated and compared between both systems. Both systems achieve an accuracy of more than 90%. However, the deep learning approach is more accurate than the traditional image processing techniques. It reaches 98.9% accuracy and Dice similarity 99.3%. However, the first method does not require parameters to optimize an explicit training model. The two approaches can perform well in the medical field. Moreover, the first model has more leverage than the deep learning model because the last one needs a large training dataset to build reliable software in clinics. Both proposed methods help physicians in corneal ulcer level assessment and improve treatment efficiency.
  4. Alias NA, Mustafa WA, Jamlos MA, Alquran H, Hanafi HF, Ismail S, et al.
    Diagnostics (Basel), 2022 Nov 22;12(12).
    PMID: 36552907 DOI: 10.3390/diagnostics12122900
    Cervical cancer is regularly diagnosed in women all over the world. This cancer is the seventh most frequent cancer globally and the fourth most prevalent cancer among women. Automated and higher accuracy of cervical cancer classification methods are needed for the early diagnosis of cancer. In addition, this study has proved that routine Pap smears could enhance clinical outcomes by facilitating the early diagnosis of cervical cancer. Liquid-based cytology (LBC)/Pap smears for advanced cervical screening is a highly effective precancerous cell detection technology based on cell image analysis, where cells are classed as normal or abnormal. Computer-aided systems in medical imaging have benefited greatly from extraordinary developments in artificial intelligence (AI) technology. However, resource and computational cost constraints prevent the widespread use of AI-based automation-assisted cervical cancer screening systems. Hence, this paper reviewed the related studies that have been done by previous researchers related to the automation of cervical cancer classification based on machine learning. The objective of this study is to systematically review and analyses the current research on the classification of the cervical using machine learning. The literature that has been reviewed is indexed by Scopus and Web of Science. As a result, for the published paper access until October 2022, this study assessed past approaches for cervical cell classification based on machine learning applications.
  5. Yusoff M, Haryanto T, Suhartanto H, Mustafa WA, Zain JM, Kusmardi K
    Diagnostics (Basel), 2023 Feb 11;13(4).
    PMID: 36832171 DOI: 10.3390/diagnostics13040683
    Breast cancer is diagnosed using histopathological imaging. This task is extremely time-consuming due to high image complexity and volume. However, it is important to facilitate the early detection of breast cancer for medical intervention. Deep learning (DL) has become popular in medical imaging solutions and has demonstrated various levels of performance in diagnosing cancerous images. Nonetheless, achieving high precision while minimizing overfitting remains a significant challenge for classification solutions. The handling of imbalanced data and incorrect labeling is a further concern. Additional methods, such as pre-processing, ensemble, and normalization techniques, have been established to enhance image characteristics. These methods could influence classification solutions and be used to overcome overfitting and data balancing issues. Hence, developing a more sophisticated DL variant could improve classification accuracy while reducing overfitting. Technological advancements in DL have fueled automated breast cancer diagnosis growth in recent years. This paper reviewed studies on the capability of DL to classify histopathological breast cancer images, as the objective of this study was to systematically review and analyze current research on the classification of histopathological images. Additionally, literature from the Scopus and Web of Science (WOS) indexes was reviewed. This study assessed recent approaches for histopathological breast cancer image classification in DL applications for papers published up until November 2022. The findings of this study suggest that DL methods, especially convolution neural networks and their hybrids, are the most cutting-edge approaches currently in use. To find a new technique, it is necessary first to survey the landscape of existing DL approaches and their hybrid methods to conduct comparisons and case studies.
  6. Yacob YM, Alquran H, Mustafa WA, Alsalatie M, Sakim HAM, Lola MS
    Diagnostics (Basel), 2023 Jan 17;13(3).
    PMID: 36766441 DOI: 10.3390/diagnostics13030336
    Atrophic gastritis (AG) is commonly caused by the infection of the Helicobacter pylori (H. pylori) bacteria. If untreated, AG may develop into a chronic condition leading to gastric cancer, which is deemed to be the third primary cause of cancer-related deaths worldwide. Precursory detection of AG is crucial to avoid such cases. This work focuses on H. pylori-associated infection located at the gastric antrum, where the classification is of binary classes of normal versus atrophic gastritis. Existing work developed the Deep Convolution Neural Network (DCNN) of GoogLeNet with 22 layers of the pre-trained model. Another study employed GoogLeNet based on the Inception Module, fast and robust fuzzy C-means (FRFCM), and simple linear iterative clustering (SLIC) superpixel algorithms to identify gastric disease. GoogLeNet with Caffe framework and ResNet-50 are machine learners that detect H. pylori infection. Nonetheless, the accuracy may become abundant as the network depth increases. An upgrade to the current standards method is highly anticipated to avoid untreated and inaccurate diagnoses that may lead to chronic AG. The proposed work incorporates improved techniques revolving within DCNN with pooling as pre-trained models and channel shuffle to assist streams of information across feature channels to ease the training of networks for deeper CNN. In addition, Canonical Correlation Analysis (CCA) feature fusion method and ReliefF feature selection approaches are intended to revamp the combined techniques. CCA models the relationship between the two data sets of significant features generated by pre-trained ShuffleNet. ReliefF reduces and selects essential features from CCA and is classified using the Generalized Additive Model (GAM). It is believed the extended work is justified with a 98.2% testing accuracy reading, thus providing an accurate diagnosis of normal versus atrophic gastritis.
  7. Alias NA, Mustafa WA, Jamlos MA, Alkhayyat A, Rahman KSA, Q Malik R
    Oncol Res, 2021;29(5):365-376.
    PMID: 37305159 DOI: 10.32604/or.2022.025897
    Cervical cancer is a prevalent and deadly cancer that affects women all over the world. It affects about 0.5 million women anually and results in over 0.3 million fatalities. Diagnosis of this cancer was previously done manually, which could result in false positives or negatives. The researchers are still contemplating how to detect cervical cancer automatically and how to evaluate Pap smear images. Hence, this paper has reviewed several detection methods from the previous researches that has been done before. This paper reviews pre-processing, detection method framework for nucleus detection, and analysis performance of the method selected. There are four methods based on a reviewed technique from previous studies that have been running through the experimental procedure using Matlab, and the dataset used is established Herlev Dataset. The results show that the highest performance assessment metric values obtain from Method 1: Thresholding and Trace region boundaries in a binary image with the values of precision 1.0, sensitivity 98.77%, specificity 98.76%, accuracy 98.77% and PSNR 25.74% for a single type of cell. Meanwhile, the average values of precision were 0.99, sensitivity 90.71%, specificity 96.55%, accuracy 92.91% and PSNR 16.22%. The experimental results are then compared to the existing methods from previous studies. They show that the improvement method is able to detect the nucleus of the cell with higher performance assessment values. On the other hand, the majority of current approaches can be used with either a single or a large number of cervical cancer smear images. This study might persuade other researchers to recognize the value of some of the existing detection techniques and offer a strong approach for developing and implementing new solutions.
  8. Alsalatie M, Alquran H, Mustafa WA, Zyout A, Alqudah AM, Kaifi R, et al.
    Diagnostics (Basel), 2023 Aug 25;13(17).
    PMID: 37685299 DOI: 10.3390/diagnostics13172762
    One of the most widespread health issues affecting women is cervical cancer. Early detection of cervical cancer through improved screening strategies will reduce cervical cancer-related morbidity and mortality rates worldwide. Using a Pap smear image is a novel method for detecting cervical cancer. Previous studies have focused on whole Pap smear images or extracted nuclei to detect cervical cancer. In this paper, we compared three scenarios of the entire cell, cytoplasm region, or nucleus region only into seven classes of cervical cancer. After applying image augmentation to solve imbalanced data problems, automated features are extracted using three pre-trained convolutional neural networks: AlexNet, DarkNet 19, and NasNet. There are twenty-one features as a result of these scenario combinations. The most important features are split into ten features by the principal component analysis, which reduces the dimensionality. This study employs feature weighting to create an efficient computer-aided cervical cancer diagnosis system. The optimization procedure uses the new evolutionary algorithms known as Ant lion optimization (ALO) and particle swarm optimization (PSO). Finally, two types of machine learning algorithms, support vector machine classifier, and random forest classifier, have been used in this paper to perform classification jobs. With a 99.5% accuracy rate for seven classes using the PSO algorithm, the SVM classifier outperformed the RF, which had a 98.9% accuracy rate in the same region. Our outcome is superior to other studies that used seven classes because of this focus on the tissues rather than just the nucleus. This method will aid physicians in diagnosing precancerous and early-stage cervical cancer by depending on the tissues, rather than on the nucleus. The result can be enhanced using a significant amount of data.
  9. Jamlos MA, Jamlos MF, Mustafa WA, Othman NA, Rohani MNKH, Saidi SA, et al.
    Nanomaterials (Basel), 2022 Dec 21;13(1).
    PMID: 36615938 DOI: 10.3390/nano13010027
    A low cost, with high performance, reduced graphene oxide (RGO) Ultra-wide Band (UWB) array sensor is presented to be applied with a technique of confocal radar-based microwave imaging to recognize a tumor in a human brain. RGO is used to form its patches on a Taconic substrate. The sensor functioned in a range of 1.2 to 10.8 GHz under UWB frequency. The sensor demonstrates high gain of 5.2 to 14.5 dB, with the small size of 90 mm × 45 mm2, which can be easily integrated into microwave imaging systems and allow the best functionality. Moreover, the novel UWB RGO array sensor is established as a detector with a phantom of the human head. The layers' structure represents liquid-imitating tissues that consist of skin, fat, skull, and brain. The sensor will scan nine different points to cover the whole one-sided head phantom to obtain equally distributed reflected signals under two different situations, namely the existence and absence of the tumor. In order to accurately detect the tumor by producing sharper and clearer microwave image, the Matrix Laboratory software is used to improve the microwave imaging algorithm (delay and sum) including summing the imaging algorithm and recording the scattering parameters. The existence of a tumor will produce images with an error that is lower than 2 cm.
  10. Yean CW, Wan Ahmad WK, Mustafa WA, Murugappan M, Rajamanickam Y, Adom AH, et al.
    Brain Sci, 2020 Sep 25;10(10).
    PMID: 32992930 DOI: 10.3390/brainsci10100672
    Emotion assessment in stroke patients gives meaningful information to physiotherapists to identify the appropriate method for treatment. This study was aimed to classify the emotions of stroke patients by applying bispectrum features in electroencephalogram (EEG) signals. EEG signals from three groups of subjects, namely stroke patients with left brain damage (LBD), right brain damage (RBD), and normal control (NC), were analyzed for six different emotional states. The estimated bispectrum mapped in the contour plots show the different appearance of nonlinearity in the EEG signals for different emotional states. Bispectrum features were extracted from the alpha (8-13) Hz, beta (13-30) Hz and gamma (30-49) Hz bands, respectively. The k-nearest neighbor (KNN) and probabilistic neural network (PNN) classifiers were used to classify the six emotions in LBD, RBD and NC. The bispectrum features showed statistical significance for all three groups. The beta frequency band was the best performing EEG frequency-sub band for emotion classification. The combination of alpha to gamma bands provides the highest classification accuracy in both KNN and PNN classifiers. Sadness emotion records the highest classification, which was 65.37% in LBD, 71.48% in RBD and 75.56% in NC groups.
  11. Halim AAA, Andrew AM, Mustafa WA, Mohd Yasin MN, Jusoh M, Veeraperumal V, et al.
    Diagnostics (Basel), 2022 Nov 19;12(11).
    PMID: 36428930 DOI: 10.3390/diagnostics12112870
    Breast cancer is the most common cancer diagnosed in women and the leading cause of cancer-related deaths among women worldwide. The death rate is high because of the lack of early signs. Due to the absence of a cure, immediate treatment is necessary to remove the cancerous cells and prolong life. For early breast cancer detection, it is crucial to propose a robust intelligent classifier with statistical feature analysis that considers parameter existence, size, and location. This paper proposes a novel Multi-Stage Feature Selection with Binary Particle Swarm Optimization (MSFS-BPSO) using Ultra-Wideband (UWB). A collection of 39,000 data samples from non-tumor and with tumor sizes ranging from 2 to 7 mm was created using realistic tissue-like dielectric materials. Subsequently, the tumor models were inserted into the heterogeneous breast phantom. The breast phantom with tumors was imaged and represented in both time and frequency domains using the UWB signal. Consequently, the dataset was fed into the MSFS-BPSO framework and started with feature normalization before it was reduced using feature dimension reduction. Then, the feature selection (based on time/frequency domain) using seven different classifiers selected the frequency domain compared to the time domain and continued to perform feature extraction. Feature selection using Analysis of Variance (ANOVA) is able to distinguish between class-correlated data. Finally, the optimum feature subset was selected using a Probabilistic Neural Network (PNN) classifier with the Binary Particle Swarm Optimization (BPSO) method. The research findings found that the MSFS-BPSO method has increased classification accuracy up to 96.3% and given good dependability even when employing an enormous data sample.
  12. Wan Mohamad Nawi WIA, K Abdul Hamid AA, Lola MS, Zakaria S, Aruchunan E, Gobithaasan RU, et al.
    PLoS One, 2023;18(5):e0285407.
    PMID: 37172040 DOI: 10.1371/journal.pone.0285407
    Improving forecasting particularly time series forecasting accuracy, efficiency and precisely become crucial for the authorities to forecast, monitor, and prevent the COVID-19 cases so that its spread can be controlled more effectively. However, the results obtained from prediction models are inaccurate, imprecise as well as inefficient due to linear and non-linear patterns exist in the data set, respectively. Therefore, to produce more accurate and efficient COVID-19 prediction value that is closer to the true COVID-19 value, a hybrid approach has been implemented. Thus, aims of this study is (1) to propose a hybrid ARIMA-SVM model to produce better forecasting results. (2) to investigate in terms of the performance of the proposed models and percentage improvement against ARIMA and SVM models. statistical measurements such as MSE, RMSE, MAE, and MAPE then conducted to verify that the proposed models are better than ARIMA and SVM models. Empirical results with three real datasets of well-known cases of COVID-19 in Malaysia show that, compared to the ARIMA and SVM models, the proposed model generates the smallest MSE, RMSE, MAE and MAPE values for the training and testing datasets, means that the predicted value from the proposed model is closer to the actual value. These results prove that the proposed model can generate estimated values more accurately and efficiently. As compared to ARIMA and SVM, our proposed models perform much better in terms of error reduction percentages for all datasets. This is demonstrated by the maximum scores of 73.12%, 74.6%, 90.38%, and 68.99% in the MAE, MAPE, MSE, and RMSE, respectively. Therefore, the proposed model can be the best and effective way to improve prediction performance with a higher level of accuracy and efficiency in predicting cases of COVID-19.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links