Displaying all 6 publications

Abstract:
Sort:
  1. Abu Naim A, Umar A, Sanagi MM, Basaruddin N
    Carbohydr Polym, 2013 Nov 6;98(2):1618-23.
    PMID: 24053848 DOI: 10.1016/j.carbpol.2013.07.054
    Chitin was successfully grafted with polystyrene by free radical mechanism using ammonium persulfate (APS) initiator. The reaction was carried out in aqueous medium. The effect of pH, chitin:monomer weight ratio, APS, reaction time and reaction temperature were investigated. The results showed that the optimum conditions for grafting of polystyrene were found as follows: pH 7, chitin:monomer weight ratio of 1:3, 0.4 g of APS, reaction temperature of 60 °C and reaction time 2 h. The graft copolymer was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and differential scanning electron microscopy (DSC). Gel permeation chromatography (GPC) analysis carried out on the hydrolyzed graft copolymer showed that the Mn and Mw were 6.3395×10(4) g/mol and 1.69283×10(5) g/mol, respectively, with polydispersity index of 2.7.
  2. See HH, Marsin Sanagi M, Ibrahim WA, Naim AA
    J Chromatogr A, 2010 Mar 12;1217(11):1767-72.
    PMID: 20138287 DOI: 10.1016/j.chroma.2010.01.053
    A novel microextraction technique termed solid phase membrane tip extraction (SPMTE) was developed. Selected triazine herbicides were employed as model compounds to evaluate the extraction performance and multiwall carbon nanotubes (MWCNTs) were used as the adsorbent enclosed in SPMTE device. The SPMTE procedure was performed in semi-automated dynamic mode and several important extraction parameters were comprehensively optimized. Under the optimum extraction conditions, the method showed good linearity in the range of 1-100 microg/L, acceptable reproducibility (RSD 6-8%, n=5), low limits of detection (0.2-0.5 microg/L), and satisfactory relative recoveries (95-101%). The SPMTE device could be regenerated and reused up to 15 analyses with no analyte carry-over effects observed. Comparison was made with commercially available solid phase extraction-molecular imprinted polymer cartridge (SPE-MIP) for triazine herbicides as the reference method. The new developed method showed comparable or even better results against reference method and is a simple, feasible, and cost effective microextraction technique.
  3. Sanagi MM, Ling SL, Nasir Z, Hermawan D, Ibrahim WA, Abu Naim A
    J AOAC Int, 2010 2 20;92(6):1833-8.
    PMID: 20166602
    LOD and LOQ are two important performance characteristics in method validation. This work compares three methods based on the International Conference on Harmonization and EURACHEM guidelines, namely, signal-to-noise, blank determination, and linear regression, to estimate the LOD and LOQ for volatile organic compounds (VOCs) by experimental methodology using GC. Five VOCs, toluene, ethylbenzene, isopropylbenzene, n-propylbenzene, and styrene, were chosen for the experimental study. The results indicated that the estimated LODs and LOQs were not equivalent and could vary by a factor of 5 to 6 for the different methods. It is, therefore, essential to have a clearly described procedure for estimating the LOD and LOQ during method validation to allow interlaboratory comparisons.
  4. Sutirman ZA, Sanagi MM, Abd Karim KJ, Abu Naim A, Wan Ibrahim WA
    Int J Biol Macromol, 2019 Jul 15;133:1260-1267.
    PMID: 31047925 DOI: 10.1016/j.ijbiomac.2019.04.188
    Grafting of crosslinked chitosan with monomer, N-vinyl-2-pyrrolidone, has been carried out to investigate its adsorption capacity toward Orange G (OG) from aqueous solutions. The adsorption performance of modified chitosan (cts(x)-g-PNVP) was examined and compared with that of the unmodified chitosan. The effects of initial pH, contact time and initial dye concentration were investigated in a batch system. The experimental data were correlated with the Langmuir and Freundlich isotherm models. The maximum adsorption capacity of cts(x)-g-PNVP (63.7mgg-1) based on Langmuir equation was relatively higher than that of the unmodified chitosan (1.7mgg-1). The kinetic studies showed that the adsorption process was consistent with the pseudo-second order kinetic model. Interaction mechanisms between OG and cts(x)-g-PNVP were also proposed. The overall results suggested that the prepared cts(x)-g-PNVP stands a good candidate as adsorbent for removal of anionic dye from aqueous solutions.
  5. Sutirman ZA, Sanagi MM, Abd Karim J, Abu Naim A, Wan Ibrahim WA
    Int J Biol Macromol, 2018 Feb;107(Pt A):891-897.
    PMID: 28935540 DOI: 10.1016/j.ijbiomac.2017.09.061
    Crosslinked chitosan beads were grafted with N-vinyl-2-pyrrolidone (NVP) using ammonium persulfate (APS) as free radical initiator. Important variables on graft copolymerization such as temperature, reaction time, concentration of initiator and concentration of monomer were optimized. The results revealed optimum conditions for maximum grafting of NVP on 1g crosslinked chitosan as follows: reaction temperature, 60°C; reaction time, 2h and concentrations of APS and NVP of 2.63×10-1M and 26.99×10-1M, respectively. The modified chitosan beads were characterized by FTIR spectroscopy, 13C NMR, SEM and BET to provide evidence of successful crosslinking and grafting reactions. The resulting material (cts(x)-g-PNVP) was evaluated as adsorbent for the removal of Cu(II) ions from aqueous solutions in a batch experiment. The Langmuir and Freundlich adsorption models were also applied to describe the equilibrium isotherms. The results showed that the adsorption of the copper ions onto the beads agreed well with Langmuir model with the maximum capacity (qmax) of 122mgg-1.
  6. Dobbelaar E, Goher SS, Vidal JL, Obhi NK, Felisilda BMB, Choo YSL, et al.
    Angew Chem Int Ed Engl, 2024 Aug 26;63(35):e202319892.
    PMID: 39046086 DOI: 10.1002/anie.202319892
    The concepts of sustainability and sustainable chemistry have attracted increasing attention in recent years, being of great importance to the younger generation. In this Viewpoint Article, we share how early-career chemists can contribute to the sustainable transformation of their discipline. We identify ways in which they can engage to catalyse action for change. This article does not attempt to answer questions about the most promising or pressing areas driving research and chemical innovation in the context of sustainability. Instead, we want to inspire and engage early-career chemists in pursuing sustainable actions by showcasing opportunities in education, outreach and policymaking, research culture and publishing, while highlighting existing challenges and the complexity of the topic. We want to empower early-career chemists by providing resources and ideas for engagement for a sustainable future globally. While the article focuses on students and early-career chemists, it provides insights to further stimulate the engagement of scientists from diverse backgrounds.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links