Affiliations 

  • 1 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • 2 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. Electronic address: marsin@kimia.fs.utm.my
  • 3 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
Int J Biol Macromol, 2019 Jul 15;133:1260-1267.
PMID: 31047925 DOI: 10.1016/j.ijbiomac.2019.04.188

Abstract

Grafting of crosslinked chitosan with monomer, N-vinyl-2-pyrrolidone, has been carried out to investigate its adsorption capacity toward Orange G (OG) from aqueous solutions. The adsorption performance of modified chitosan (cts(x)-g-PNVP) was examined and compared with that of the unmodified chitosan. The effects of initial pH, contact time and initial dye concentration were investigated in a batch system. The experimental data were correlated with the Langmuir and Freundlich isotherm models. The maximum adsorption capacity of cts(x)-g-PNVP (63.7mgg-1) based on Langmuir equation was relatively higher than that of the unmodified chitosan (1.7mgg-1). The kinetic studies showed that the adsorption process was consistent with the pseudo-second order kinetic model. Interaction mechanisms between OG and cts(x)-g-PNVP were also proposed. The overall results suggested that the prepared cts(x)-g-PNVP stands a good candidate as adsorbent for removal of anionic dye from aqueous solutions.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.