This study explored the influence of azo dye concentration, salinity (with and without aeration) and nitrate concentration on bioelectricity generation and treatment performance in the up-flow constructed wetland-microbial fuel cell (UFCW-MFC) system. The decolourisation efficiencies were up to 91% for 500 mg/L of Acid Red 18 (AR18). However, the power density declined with the increment in azo dye concentration. The results suggest that the combination of salinity and aeration at an optimum level improved the power performance. The highest power density achieved was 8.67 mW/m2. The increase of nitrate by 3-fold led to decrease in decolourisation and power density of the system. The findings revealed that the electron acceptors (AR18, nitrate and anode) competed at the anodic region for electrons and the electron transfer pathways would directly influence the treatment and power performance of UFCW-MFC. The planted UFCW-MFC significantly outweighed the plant-free control in power performance.
In this study, calcined Lapindo volcanic mud (LVM) was used as an adsorbent to remove an anionic dye, methyl orange (MO), from an aqueous solution by the batch adsorption technique. Various conditions were evaluated, including initial dye concentration, adsorbent dosage, contact time, solution pH, and temperature. The adsorption kinetics and equilibrium isotherms of the LVM were studied using pseudo-first-order and -second-order kinetic equations, as well as the Freundlich and Langmuir models. The experimental data obtained with LVM fits best to the Langmuir isotherm model and exhibited a maximum adsorption capacity (q(max)) of 333.3 mg g(-1); the data followed the second-order equation. The intraparticle diffusion studies revealed that the adsorption rates were not controlled only by the diffusion step. The thermodynamic parameters, such as the changes in enthalpy, entropy, and Gibbs free energy, showed that the adsorption is endothermic, random and spontaneous at high temperature. The results indicate that LVM adsorbs MO efficiently and could be utilized as a low-cost alternative adsorbent for the removal of anionic dyes in wastewater treatment.
In this paper, the newly explored TiO(2)-Chitosan/Glass was suggested as a promising alternative material to conventional means of wastewater treatment. Characterization of TiO(2)-Chitosan/Glass photocatalyst was studied with SEM-EDX, XRD, and Fourier transform infrared spectroscopy (FTIR) analysis. The combination effect of photodegradation-adsorption process for the removal of methyl orange (MO), an acid dye of the monoazo series occur promisingly when four layers of TiO(2)-Chitosan/Glass photocatalyst was used for MO removal. Approximately, 87.0% of total MO removal was achieved. The reactive -NH(2), -OH, and metal oxide contents in the prepared photocatalyst responsible for the photodegradation-adsorption effect were confirmed by FTIR study. Similarly, MO removal behavior was well supported by SEM-EDX and XRD analysis. Significant dependence of MO removal on the TiO(2)-Chitosan loading can be explained in terms of relationship between quantum yield of photocatalytic reactions and photocatalyst structure/activity. Hence, the research work done thus far suggests a new method, having both the advantages of photodegradation-adsorption process in the abatement of various wastewater pollutants.
Grafting of crosslinked chitosan with monomer, N-vinyl-2-pyrrolidone, has been carried out to investigate its adsorption capacity toward Orange G (OG) from aqueous solutions. The adsorption performance of modified chitosan (cts(x)-g-PNVP) was examined and compared with that of the unmodified chitosan. The effects of initial pH, contact time and initial dye concentration were investigated in a batch system. The experimental data were correlated with the Langmuir and Freundlich isotherm models. The maximum adsorption capacity of cts(x)-g-PNVP (63.7mgg-1) based on Langmuir equation was relatively higher than that of the unmodified chitosan (1.7mgg-1). The kinetic studies showed that the adsorption process was consistent with the pseudo-second order kinetic model. Interaction mechanisms between OG and cts(x)-g-PNVP were also proposed. The overall results suggested that the prepared cts(x)-g-PNVP stands a good candidate as adsorbent for removal of anionic dye from aqueous solutions.
Fabrication of an immobilized cross-linked chitosan-epichlorohydrine thin film (CLCETF) onto glass plate for adsorption of reactive orange 16 (RO16) dye was successfully studied using the direct casting technique. Adsorption experiments were performed as a function of contact time, initial dye concentration (25mg/L to 350mg/L), and pH (3-11). The adsorption isotherm followed the Langmuir model. The adsorption capacity of CLECTF for RO16 was 356.50mg/g at 27±2°C. The kinetics closely followed the pseudo-second-order model. Results supported the potential use of an immobilized CLECTF as effective adsorbent for the treatment of reactive dye without using filtration process.
In this work, chitosan (Chi) was cross-linked with glyoxal (Gly) and deposited onto glass plate to be a superior adsorbent film for two structurally different reactive orange 16 (RO-16) and methyl orange (MO) dyes by using non-conventional adsorption system without filtration process. The characterizations indicate that the cross-linked chitosan-glyoxal (Chi-Gly) film has a low swelling index, high adherence strength on glass plate, amine group (NH2) content was 32.52%, and pHpzc of ∼6.0 indicating a negative surface charge occurs above pHpzc. The adsorption isotherm data of RO-16 and MO by Chi-Gly film were in agreement with Langmuir isotherm, with maximum adsorption capacities of 1554.3 mg/g and 1451.9 mg/g, respectively. The pseudo-first-order kinetic model best described the kinetic data. The adsorption process was spontaneous and exothermic in nature at Chi-Gly film thickness of 8.55 μm, and pH ~3. The mechanism of adsorption included mainly electrostatic attractions, dipole-dipole hydrogen bonding interactions, n-π stacking attractions, and Yoshida H-bonding. This study reveals that immobilized Chi-Gly film as a good candidate for adsorption of reactive and acid dyes as it does not require any filtration process and adsorbent recovery during and post-adsorption process.
Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions.
Cross-linked chitosan/sepiolite composite was prepared from sepiolite clay and chitosan, and was cross-linked using epichlorohydrin. Among the various weight ratio percentage of chitosan and sepiolite clay composites, CS50SP50 was selected as the best adsorbent for both methylene blue (MB) and reactive orange 16 (RO 16). At an optimum adsorbent dosage of 0.2g/100mL, the effects of initial dye concentration (25-400mg/L) and pH (3-11) on MB and RO 16 adsorption onto CS50SP50 composite were studied. Monolayer adsorption capacities of CS50SP50 composite for MB and RO 16 were 40.986mg/g and 190.965mg/g, respectively at 30°C. Freundlich, Langmuir and Temkin isotherms applied on the adsorption data for both the dyes reveal that data fitted best for Freundlich model. For both the dyes pseudo-second-order kinetics were found to describe the adsorption process better than pseudo-first-order kinetics. The adsorption capacity of CS50SP50 composite for both the dyes was found better compared to previous studies thus making it potentially low-cost adsorbent for removal of both cationic and reactive dyes.
Photocatalytic fuel cell (PFC) is a potential wastewater treatment technology that can generate electricity from the conversion of chemical energy of organic pollutants. An immobilized ZnO/Zn fabricated by sonication and heat attachment method was applied as the photoanode and Pt/C plate was used as the cathode of the PFC in this study. Factors that affect the decolorization efficiency and electricity generation of the PFC such as different initial dye concentrations and pH were investigated. Results revealed that the degradation of Reactive Green 19 (RG19) was enhanced in a closed circuit PFC compared with that of a opened circuit PFC. Almost 100% decolorization could be achieved in 8 h when 250 mL of 30 mg L(-1) of RG19 was treated in a PFC without any supporting electrolyte. The highest short circuit current of 0.0427 mA cm(-2) and maximum power density of 0.0102 mW cm(-2) was obtained by PFC using 30 mg L(-1) of RG19. The correlation between dye degradation, conductivity and voltage output were also investigated and discussed.
Cross-linked beads of activated oil palm ash zeolite/chitosan (Z-AC/C) composite were prepared through the hydrothermal treatment of NaOH activated oil palm ash followed by beading with chitosan. The effects of initial dye concentration (50-400mg/L), temperature (30°C-50°C) and pH (3-13) on batch adsorption of methylene blue (MB) and acid blue 29 (AB29) were studied. Adsorption of both dyes was better described by Pseudo-second-order kinetics and Freundlich isotherm model. The maximum adsorption capacities of Z-AC/C were 151.51, 169.49, and 199.20mg/g for MB and 212.76, 238.09, and 270.27mg/g for AB29 at 30°C, 40°C, and 50°C, respectively.
In this study, a new magnetic Schiff's base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite (Chi-Gly/FA/Fe3O4) was successfully synthesized by direct compositing of magnetic chitosan (Chi) with fly ash (FA) powder particles, and followed by Schiff's base formation via cross-linking reaction with glyoxal (Gly). Various techniques such as BET, XRD, FTIR, and SEM-EDX were utilized to characterize of Chi-Gly/FA/Fe3O4 biocomposite. The effectiveness of Chi-Gly/FA/Fe3O4 as an adsorbent was evaluated for the removal anionic azo dye such as reactive orange 16 (RO16) from aqueous environment. The effect of adsorption process parameters namely adsorbent dose (A: 0.02-0.1 g), solution pH (B: 4-10), temperature (C: 30-50 °C), and contact time (D: 5-20 min) were optimized via Box-Behnken design (BBD) in response surface methodology (RSM). The adsorption process followed the pseudo-second order (PSO) kinetic, and Freundlich isotherm models. The maximum adsorption capacity of Chi-Gly/FA/Fe3O4 biocomposite for RO16 dye was recorded to be 112.5 mg/g at 40 °C. The RO16 dye adsorption mechanism was attributed to various interactions such as electrostatic, n-π, H-bonding, and Yoshida H-bonding. Furthermore, the Chi-Gly/FA/Fe3O4 biocomposite exhibited a high ability to separate from the aqueous solution after adsorption process by external magnetic field.
A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at approximately 28 degrees C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis.