Displaying publications 1 - 20 of 452 in total

  1. Low EJ, Yusoff HM, Batar N, Nor Azmi INZ, Chia PW, Lam SS, et al.
    Environ Sci Pollut Res Int, 2023 Jul;30(31):76297-76307.
    PMID: 37246180 DOI: 10.1007/s11356-023-27823-3
    Corrosion inhibitors have offered new opportunities to bring positive impacts on our society, especially when it has helped in protecting metals against corrosion in an aqueous solution. Unfortunately, the commonly known corrosion inhibitors used to protect metals or alloys against corrosion are invariably related to one or more drawbacks such as the employment of hazardous anti-corrosion agents, leakage of anti-corrosion agents in aqueous solution, and high solubility of anti-corrosion agents in water. Over the years, using food additives as anti-corrosion agents have drawn interest as it offers biocompatibility, less toxic, and promising applications. In general, food additives are considered safe for human consumption worldwide, and it was rigorously tested and approved by the US Food and Drug Administration. Nowadays, researchers are more interested in innovating and using green, less toxic, and economical corrosion inhibitors in metal and alloy protection. As such, we have reviewed the use of food additives to protect metals and alloys against corrosion. The current review is significant and differs from the previous review articles made on corrosion inhibitors, in which the new role of food additives is highlighted as green and environmental-friendly substances in the protection of metals and alloys against corrosion. It is anticipated that the next generation will be utilizing non-toxic and sustainable anti-corrosion agents, in which food additives might be the potential to fulfill the green chemistry goals.
    Matched MeSH terms: Water/chemistry
  2. Yang J, Xu S, Chee CY, Ching KY, Wei Y, Wang R, et al.
    Int J Biol Macromol, 2024 Feb;258(Pt 2):129037.
    PMID: 38158061 DOI: 10.1016/j.ijbiomac.2023.129037
    The present work systematically investigated the influence of starch silylation on the structures and properties of starch/epoxidized soybean oil-based bioplastics. Silylated starch was synthesized using starch particles (SP-ST) or gelatinized starch (SG-ST) under different silane hydrolysis pHs. Due to the appearance of -NH2 groups and lower OH wavenumbers, SP-ST obtained at pH 5 showed higher silylation degree and stronger hydrogen bond interaction with epoxidized soybean oils (ESO) than that at pH 11. The morphology analysis revealed better interfacial compatibility of ESO and SP-ST. The tensile strength of the samples containing SP-ST increased by 51.91 % than the control, emphasizing the enhanced interaction within the bioplastics. However, tensile strength of the bioplastics with SG-ST decreased by 59.56 % due to their high moisture contents from unreacted silanes. Additionally, the bioplastics with SG-ST exhibited an obvious reduction of thermal stability and an increase in water solubility because of the presence of unreacted APMS. The bioplastic degradation was not prevented by starch silylation except high pH. The bioplastics showed the most desirable tensile properties, thermal stability, and water solubility when starch was surface-modified with silanes hydrolyzed at pH 5. These outcomes made the fabricated bioplastics strong candidates for petroleum-based plastics for packaging applications.
    Matched MeSH terms: Water/chemistry
  3. Alrosan M, Madi Almajwal A, Al-Qaisi A, Gammoh S, Alu'datt MH, Al Qudsi FR, et al.
    Food Chem, 2024 Jul 30;447:138882.
    PMID: 38452537 DOI: 10.1016/j.foodchem.2024.138882
    The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P water solubility and digestibility of T-CPs increased significantly (P water solubility and digestibility.
    Matched MeSH terms: Water/chemistry
  4. Aziz T, Farid A, Haq F, Kiran M, Ullah N, Faisal S, et al.
    Environ Res, 2023 Apr 01;222:115253.
    PMID: 36702191 DOI: 10.1016/j.envres.2023.115253
    Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.
    Matched MeSH terms: Water/chemistry
  5. Ağbulut Ü, Sirohi R, Lichtfouse E, Chen WH, Len C, Show PL, et al.
    Bioresour Technol, 2023 May;376:128860.
    PMID: 36907228 DOI: 10.1016/j.biortech.2023.128860
    Microalgae have great potential in producing energy-dense and valuable products via thermochemical processes. Therefore, producing alternative bio-oil to fossil fuel from microalgae has rapidly gained popularity due to its environmentally friendly process and elevated productivity. This current work aims to review comprehensively the microalgae bio-oil production using pyrolysis and hydrothermal liquefaction. In addition, core mechanisms of pyrolysis and hydrothermal liquefaction process for microalgae were scrutinized, showing that the presence of lipids and proteins could contribute to forming a large amount of compounds containing O and N elements in bio-oil. However, applying proper catalysts and advanced technologies for the two aforementioned approaches could improve the quality, heating value, and yield of microalgae bio-oil. In general, microalgae bio-oil produced under optimal conditions could have 46 MJ/kg heating value and 60% yield, indicating that microalgae bio-oil could become a promising alternative fuel for transportation and power generation.
    Matched MeSH terms: Water/chemistry
  6. Muchtaridi M, Triwahyuningtyas D, Muhammad Fakih T, Megantara S, Choi SB
    J Biomol Struct Dyn, 2024 Apr;42(6):3223-3232.
    PMID: 37286382 DOI: 10.1080/07391102.2023.2214237
    α-Mangostin is the most abundant compound contained in the mangostin (Garcinia mangostana L.) plant which have been developed and proven to have many promising pharmacological effects. However, the low water solubility of α-mangostin causes limitations in its development in clinical purpose. To increase the solubility of a compound, a method currently being developed is to make drug inclusion complexes using cyclodextrins. This research aimed to use in silico techniques namely molecular docking study and molecular dynamics simulation to explore the molecular mechanism and stability of the encapsulation of α-mangostin using cyclodextrins. Two types of cyclodextrins were used including β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin docked against α-mangostin. From the molecular docking results, it shows that the α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin provides the lowest binding energy value of -7.99 Kcal/mol compared to β-cyclodextrin value of -6.14 Kcal/mol. The α-mangostin complex with 2-hydroxypropyl-β-cyclodextrin also showed good stability based on molecular dynamics simulation during 100 ns. From molecular motion, RDF, Rg, SASA, density, total energy analyzes, this complex shows increased solubility in water and provided good stability. This indicates that the encapsulation of α-mangostin with 2-hydroxypropyl-β-cyclodextrin can increase the solubility of the α-mangostin.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Water/chemistry
  7. Matlan SJ, Mukhlisin M, Taha MR
    ScientificWorldJournal, 2014;2014:569851.
    PMID: 24971384 DOI: 10.1155/2014/569851
    Soil-water characteristic curves (SWCCs) are important in terms of groundwater recharge, agriculture, and soil chemistry. These relationships are also of considerable value in geotechnical and geoenvironmental engineering. Their measurement, however, is difficult, expensive, and time-consuming. Many empirical models have been developed to describe the SWCC. Statistical assessment of soil-water characteristic curve models found that exponential-based model equations were the most difficult to fit and generally provided the poorest fit to the soil-water characteristic data. In this paper, an exponential-based model is devised to describe the SWCC. The modified equation is similar to those previously reported by Gardner (1956) but includes exponential variable. Verification was performed with 24 independent data sets for a wide range of soil textures. Prediction results were compared with the most widely used models to assess the model's performance. It was proven that the exponential-based equation of the modified model provided greater flexibility and a better fit to data on various types of soil.
    Matched MeSH terms: Water/chemistry*
  8. Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R
    Bioresour Technol, 2011 Apr;102(8):5193-9.
    PMID: 21333529 DOI: 10.1016/j.biortech.2011.02.001
    Effects of different physical pretreatments on water hyacinth for dilute acid hydrolysis process (121 ± 3 °C, 5% H(2)SO(4), 60 min) were comparatively investigated. Untreated sample had produced 24.69 mg sugar/g dry matter. Steaming (121 ± 3 °C) and boiling (100 ± 3 °C) for 30 min had provided 35.9% and 52.4% higher sugar yield than untreated sample, respectively. The highest sugar yield (132.96 mg sugar/g dry matter) in ultrasonication was obtained at 20 min irradiation using 100% power. The highest sugar production (155.13 mg sugar/g dry matter) was obtained from pulverized samples. Hydrolysis time was reduced when using samples pretreated by drying, mechanical comminution and ultrasonication. In most methods, prolonging the pretreatment period was ineffective and led to sugar degradations. Morphology inspection and thermal analysis had provided evidences of structure disruption that led to higher sugar recovery in hydrolysis process.
    Matched MeSH terms: Water/chemistry*
  9. Cook S, Peacock M, Evans CD, Page SE, Whelan MJ, Gauci V, et al.
    Water Res, 2017 05 15;115:229-235.
    PMID: 28284089 DOI: 10.1016/j.watres.2017.02.059
    UV-visible spectroscopy has been shown to be a useful technique for determining dissolved organic carbon (DOC) concentrations. However, at present we are unaware of any studies in the literature that have investigated the suitability of this approach for tropical DOC water samples from any tropical peatlands, although some work has been performed in other tropical environments. We used water samples from two oil palm estates in Sarawak, Malaysia to: i) investigate the suitability of both single and two-wavelength proxies for tropical DOC determination; ii) develop a calibration dataset and set of parameters to calculate DOC concentrations indirectly; iii) provide tropical researchers with guidance on the best spectrophotometric approaches to use in future analyses of DOC. Both single and two-wavelength model approaches performed well with no one model significantly outperforming the other. The predictive ability of the models suggests that UV-visible spectroscopy is both a viable and low cost method for rapidly analyzing DOC in water samples immediately post-collection, which can be important when working at remote field sites with access to only basic laboratory facilities.
    Matched MeSH terms: Fresh Water/chemistry
  10. Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV
    Molecules, 2022 Oct 23;27(21).
    PMID: 36363998 DOI: 10.3390/molecules27217170
    In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
    Matched MeSH terms: Water/chemistry
  11. Ng YS, Chan DJC
    Int J Phytoremediation, 2018;20(12):1179-1186.
    PMID: 29053371 DOI: 10.1080/15226514.2017.1375895
    Macrophytes have been used to mitigate eutrophication and upgrade effluent quality via their nutrient removal capability. However, the available data are influenced by factors such as microbial activities, weather, and wastewater quality, making comparison between nutrient removal performance of different macrophytes almost impossible. In this study, phytoremediation by Spirodela polyrhiza, Salvinia molesta and Lemna sp. were carried out axenically in synthetic wastewater under controlled condition to precisely evaluate nutrient removal efficiency of NO3--N, PO43-, NH3-N, COD and pH in the water sample. The results showed that ammonia removal was rapid, significant for S. polyrhiza and Lemna sp., with efficiency of 60% and 41% respectively within 2 days. S. polyrhiza was capable of reducing 30% of the nitrate. Lemna sp. achieved the highest phosphate reduction of 86% at day 12 to mere 1.07 mg/L PO43--P. Correlation was found between COD and TC, suggesting the release of organic substances by macrophytes into the medium. All the macrophytes showed biomass increment. S. polyrhiza outperformed other macrophytes in nutrient removal despite lower biomass production. The acquired nutrient removal profiles can serve as a guideline for the selection of suitable macrophytes in wastewater treatment and to evaluate microbial activity in non-aseptic phytoremediation system.
    Matched MeSH terms: Waste Water/chemistry*
  12. Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, et al.
    Int J Biol Macromol, 2023 Mar 15;231:123248.
    PMID: 36642356 DOI: 10.1016/j.ijbiomac.2023.123248
    Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
    Matched MeSH terms: Water/chemistry
  13. Taoufik N, Janani FZ, Khiar H, Sadiq M, Abdennouri M, Sillanpää M, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(9):23938-23964.
    PMID: 36329247 DOI: 10.1007/s11356-022-23690-6
    In the present work, we prepared MgO-La2O3-mixed-metal oxides (MMO) as efficient photocatalysts for degradation of organic pollutants. First, a series of MgAl-%La-CO3-layered double hydroxide (LDH) precursors with different contents of La (5, 10, and 20 wt%) were synthesized by the co-precipitation process and then calcined at 600 °C. The prepared materials were characterized by XRD, SEM-EDX, FTIR, TGA, ICP, and UV-vis diffuse reflectance spectroscopy. XRD indicated that MgO, La2O3, and MgAl2O4 phases were found to coexist in the calcined materials. Also, XRD confirms the orthorhombic-tetragonal phases of MgO-La2O3. The samples exhibited a small band gap of 3.0-3.22 eV based on DRS. The photocatalytic activity of the catalysts was assessed for the degradation of two dyes, namely, tartrazine (TZ) and patent blue (PB) as model organic pollutants in aqueous mediums under UV-visible light. Detailed photocatalytic tests that focused on the impacts of dopant amount of La, catalyst dose, initial pH of the solution, irradiation time, dye concentration, and reuse were carried out and discussed in this research. The experimental findings reveal that the highest photocatalytic activity was achieved with the MgO-La2O3-10% MMO with photocatalysts with a degradation efficiency of 97.4% and 93.87% for TZ and PB, respectively, within 150 min of irradiation. The addition of La to the sample was responsible for its highest photocatalytic activity. Response surface methodology (RSM) and gradient boosting regressor (GBR), as artificial intelligence techniques, were employed to assess individual and interactive influences of initial dye concentration, catalyst dose, initial pH, and irradiation time on the degradation performance. The GBR technique predicts the degradation efficiency results with R2 = 0.98 for both TZ and PB. Moreover, ANOVA analysis employing CCD-RSM reveals a high agreement between the quadratic model predictions and the experimental results for TZ and PB (R2 = 0.9327 and Adj-R2 = 0.8699, R2 = 0.9574 and Adj-R2 = 0.8704, respectively). Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose 0.3 g/L, initial dye concentration 20 mg/L, pH 4, and reaction time 150 min. On the whole, this study confirms that the proposed artificial intelligence (AI) techniques constituted reliable and robust computer techniques for monitoring and modeling the photodegradation of organic pollutants from aqueous mediums by MgO-La2O3-MMO heterostructure catalysts.
    Matched MeSH terms: Water/chemistry
  14. Loganathan L, Yap SP, Lau BF, Nagapan M
    Environ Sci Pollut Res Int, 2023 Jun;30(26):69176-69191.
    PMID: 37133663 DOI: 10.1007/s11356-023-27256-y
    Replacing conventional fine aggregates with spent mushroom substrate (SMS) is aimed at developing a sustainable lightweight masonry mortar. It is also an alternative solution for the current improper mushroom waste disposals. Density, workability, compressive strength, specific strength, flexural strength, ultrasonic pulse velocity, water absorption, sorptivity, and equivalent CO2 emission in relation to sand reduction in mortars containing 2.5-15.0% (by volume) SMS passing through a 4.75-mm sieve were investigated. As the percentages of replacement increased from 2.5 to 15.0%, the density of the SMS mortar reduced up to 34.8%, with corresponding compressive strengths of 24.96 to 3.37 MPa. Mixes with up to 12.5% SMS met the minimum compressive and flexural strengths as stated in the ASTM C129 standard. In addition, the equivalent CO2 emission of the mixes reduced 15.09% as the SMS content increased while cost-effectiveness increases up to 98.15% until 7.5% SMS replacement. In conclusion, the use of SMS as fine aggregates up to 12.5% is a viable mix design strategy for producing sustainable lightweight mortar with a lower carbon emission.
    Matched MeSH terms: Water/chemistry
  15. Sundaram V, Ramanan RN, Selvaraj M, Ahemad N, Vijayaraghavan R, MacFarlane DR, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 3):126665.
    PMID: 37689282 DOI: 10.1016/j.ijbiomac.2023.126665
    Despite extensive studies revealing the potential of cholinium-based ionic liquids (ILs) in protein stabilization, the nature of interaction between ILs' constituents and protein residues is not well understood. In this work, we used a combined computational and experimental approach to investigate the structural stability of a peptide hormone, insulin aspart (IA), in ILs containing a choline cation [Ch]+ and either dihydrogen phosphate ([Dhp]-) or acetate ([Ace]-) as anions. Although IA remained stable in both 1 M [Ch][Dhp] and 1 M [Ch][Ace], [Dhp]- exhibited a much stronger stabilization effect than [Ace]-. Both the hydrophilic ILs intensely hydrated IA and increased the number of water molecules in IA's solvation shell. Undeterred by the increased number of water molecules, the native state of IA's hydrophobic core was maintained in the presence of ILs. Importantly, our results reveal the importance of IL concentration in the medium which was critical to maintain a steady population of ions in the microenvironment of IA and to counteract the denaturing effect of water molecules. Through molecular docking, we confirm that the anions exert the dominant effect on the structure of IA, while [Ch]+ have the secondary influence. The computational results were validated using spectroscopic analyses (ultra-violet, fluorescence, and circular dichroism) along with dynamic light scattering measurements. The extended stability of IA at 30 °C for 28 days in 1 M [Ch][Dhp] and [Ch][Ace] demonstrated in this study reveals the possibility of stabilizing IA using cholinium-based ILs.
    Matched MeSH terms: Water/chemistry
  16. Amjad M, Mohyuddin A, Ulfat W, Goh HH, Dzarfan Othman MH, Kurniawan TA
    J Environ Manage, 2024 Feb 27;353:120287.
    PMID: 38335595 DOI: 10.1016/j.jenvman.2024.120287
    Textile wastewater laden with dyes has emerged as a source of water pollution. This possesses a challenge in its effective treatment using a single functional material. In respond to this technological constraint, this work presents multifunctional cotton fabrics (CFs) within a single, streamlined preparation process. This approach utilizes the adherence of Ag NPs (nanoparticles) using Si binder on the surface of CFs, resulting in Ag-coated CFs through a pad dry method. The prepared samples were characterized using scanning electron microscope-energy dispersive X-ray electroscopy (SEM-EDS), thermal gravimetric analysis (TGA), Fourier transformation infrared (FT-IR). It was found that the FT-IR spectra of Ag NPs-coated CFs had peaks appear at 3400, 2900, and 1200 cm-1, implying the stretching vibrations of O-H, C-H, and C-O, respectively. Based on the EDX analysis, the presence of C, O, and Ag related to the coated CFs were detected. After coating the CFs with varying concentrations of Ag NPs (1%, 2% and 3% (w/w)), they were used to remove dyes. Under the same concentration of 10 mg/L and optimized pH 7.5 and 2 h of reaction time, 3% (w/w) Ag-coated CFs exhibited a substantial MB degradation of 98 %, while removing 95% of methyl orange, 85% of rhodamine B, and 96% of Congo red, respectively, following 2 h of Vis exposure. Ag NPs had a strong absorption at 420 nm with 2.51 eV of energy band gap. Under UV irradiation, electrons excited and produced free radicals that promoted dyes photodegradation. The oxidation by-products included p-dihydroxybenzene and succinic acid. Spent Ag-coated CFs attained 98% of regeneration efficiency. The utilization of Ag-coated CFs as a photocatalyst facilitated treated effluents to meet the required discharge standard of lower than 1 mg/L mandated by national legislation. The integration of multifunctional CFs in the treatment system presents a new option for tackling water pollution due to dyes.
    Matched MeSH terms: Water/chemistry
  17. Zhu T, Chong MN, Chan ES
    ChemSusChem, 2014 Nov;7(11):2974-97.
    PMID: 25274424 DOI: 10.1002/cssc.201402089
    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
    Matched MeSH terms: Water/chemistry*
  18. Yakubu ML, Yusop Z, Yusof F
    ScientificWorldJournal, 2014;2014:361703.
    PMID: 25126597 DOI: 10.1155/2014/361703
    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.
    Matched MeSH terms: Fresh Water/chemistry*
  19. Gobi K, Vadivelu VM
    Bioresour Technol, 2014 Jun;161:441-5.
    PMID: 24725384 DOI: 10.1016/j.biortech.2014.03.104
    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV).
    Matched MeSH terms: Waste Water/chemistry
  20. Yahaya Khan M, Abdul Karim ZA, Hagos FY, Aziz AR, Tan IM
    ScientificWorldJournal, 2014;2014:527472.
    PMID: 24563631 DOI: 10.1155/2014/527472
    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NO x and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus.
    Matched MeSH terms: Water/chemistry*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links