Displaying all 6 publications

  1. Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M
    Environ Res, 2021 Sep 17;204(Pt B):112043.
    PMID: 34543635 DOI: 10.1016/j.envres.2021.112043
    Several strategies have been proposed to improve the performance of the anaerobic digestion (AD) process. Among them, the use of various nanoparticles (NPs) (e.g. Fe, Ag, Cu, Mn, and metal oxides) is considered one of the most effective approaches to enhance the methanogenesis stage and biogas yield. Iron-based NPs (zero-valent iron with paramagnetic properties (Fe0) and iron oxides with ferromagnetic properties (Fe3O4/Fe2O3) enhance microbial activity and minimise the inhibition effect in methanogenesis. However, comprehensive and up-to-date knowledge on the function and impact of Fe-NPs on methanogens and methanogenesis stages in AD is frequently required. This review focuses on the applicative role of iron-based NPs (Fe-NPs) in the AD methanogenesis step to provide a comprehensive understanding application of Fe-NPs. In addition, insight into the interactions between methanogens and Fe-NPs (e.g. role of methanogens, microbe interaction and gene transfer with Fe-NPs) beneficial for CH4 production rate is provided. Microbial activity, inhibition effects and direct interspecies electron transfer through Fe-NPs have been extensively discussed. Finally, further studies towards detecting effective and optimised NPs based methods in the methanogenesis stage are reported.
  2. Zaied BK, Nasrullah M, Siddique MNI, Zularisam AW, Singh L, Krishnan S
    Sci Total Environ, 2020 Mar 01;706:136095.
    PMID: 31862587 DOI: 10.1016/j.scitotenv.2019.136095
    Lack of sufficient nitrogenous substrate and buffering potential have been acknowledged as impediments to the treatment of palm oil mill effluent through co-digestion processes. In this study, ammonium bicarbonate was used to provide the nitrogenous substrate and buffering potential. To regulate the impact of ammonium bicarbonate toxicity on the anaerobic co-digestion system, dosages from 0 to 40 mg/L were supplemented. The biogas yield was used to indicate the effects of NH4+ toxicity. In a solar-assisted bioreactor, solar radiation was first collected by a solar panel and converted into electricity, which was then used to heat a mixture of palm oil mill effluent and cattle manure to maintain the reactor in the mesophilic temperature range. This co-digestion operation was performed semi-continuously and was analyzed at a 50:50 mixing ratio of palm oil mill effluent and cattle manure. The results indicate that the additional dosing of ammonium bicarbonate can significantly enhance biogas production. Maximum cumulative biogas and methane productions of 2034.00 mL and 1430.51 mL, respectively, were obtained with the optimum addition of 10 mg/L ammonium bicarbonate; these values are 29.80% and 42.30% higher, respectively, than that obtained in the control co-digestion operation without addition of ammonium bicarbonate. Utilization of a mathematical equation (G = Gmk/t) to describe a kinetic analysis of the biogas yield also indicated that the optimum ammonium bicarbonate dose was 10 mg/L. The results of this study suggest that supplementation with ammonium bicarbonate doses of up to 40 mg/L can be used to provide nitrogenous substrates and buffering potential in anaerobic co-digestion processes. The determination of the optimal dose provides an alternative and efficient option for enhanced biogas production, which will have obvious economic advantages for feasible industrial applications.
  3. Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L
    Sci Total Environ, 2020 Jul 15;726:138095.
    PMID: 32481207 DOI: 10.1016/j.scitotenv.2020.138095
    The pharmaceuticals are emergent contaminants, which can create potential threats for human health and the environment. All the pharmaceutical contaminants are becoming enormous in the environment as conventional wastewater treatment cannot be effectively implemented due to toxic and intractable action of pharmaceuticals. For this reason, the existence of pharmaceutical contaminants has brought great awareness, causing significant concern on their transformation, occurrence, risk, and fate in the environments. Electrocoagulation (EC) treatment process is effectively applied for the removal of contaminants, radionuclides, pesticides, and also harmful microorganisms. During the EC process, an electric current is employed directly, and both electrodes are dissoluted partially in the reactor under the special conditions. This electrode dissolution produces the increased concentration of cation, which is finally precipitated as hydroxides and oxides. Different anode materials usage like aluminum, stainless steel, iron, etc. are found more effective in EC operation for efficient removal of pharmaceutical contaminants. Due to the simple procedure and less costly material, EC method is extensively recognized for pharmaceutical wastewater treatment over further conventional treatment methods. The EC process has more usefulness to destabilize the pharmaceutical contaminants with the neutralization of charge and after that coagulating those contaminants to produce flocs. Thus, the review places particular emphasis on the application of EC process to remove pharmaceutical contaminants. First, the operational parameters influencing EC efficiency with the electroanalysis techniques are described. Second, in this review emerging challenges, current developments and techno-economic concerns of EC are highlighted. Finally, future recommendations and prospective on EC are envisioned.
  4. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, et al.
    Chemosphere, 2021 Oct;280:130601.
    PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601
    In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
  5. Krishnan S, Suzana BN, Wahid ZA, Nasrullah M, Abdul Munaim MS, Din MFBM, et al.
    Biotechnol Rep (Amst), 2020 Sep;27:e00498.
    PMID: 32670809 DOI: 10.1016/j.btre.2020.e00498
    The application of the xylose reductase (XR) enzyme in the development of biotechnology demands an efficient and large scale enzyme separation technique. The aim of this present work was to optimize xylose reductase (XR) purification process through ultrafiltration membrane (UF) technology using Central composite design (CCD) of response surface methods (RSM). The three effective parameters analyzed were filtration time (0-100), transmembrane pressure (TMP) (1-1.6 bar), cross flow velocity (CFV) (0.52-1.2 cm/s-1) and its combined effect to obtain high flux with less possibility of membrane fouling. Experimental studies revealed that the best range for optimization process for filtration time, operational transmembrane pressure and cross flow velocity was 30 min, 1.4 bars and 1.06 cm/s, respectively as these conditions yielded the highest membrane permeability (56.03 Lm-2h-1 bar-1) and xylitol content (15.49 g/l). According to the analysis of variance (ANOVA), the p-value (<0.0001) indicated the designed model was highly significant. The error percentage between the actual and predicted value for membrane permeability and xylitol amount (2.21 % and 4.85 % respectively), which both were found to be close to the predicted values. The verification experiments gave membrane actual permeability of 57.3 Lm-2h-1 bar-1 and 16.29 g/l of xylitol production, thus indicating that the successfully developed model to predict the response.
  6. Krishnan S, Zulkapli NS, Din MFM, Majid ZA, Honda M, Ichikawa Y, et al.
    J Environ Manage, 2020 Feb 01;255:109890.
    PMID: 31790869 DOI: 10.1016/j.jenvman.2019.109890
    Water treatment plants generate vast amounts of sludge and its disposal is one of the most expensive and environmentally problematic challenges worldwide. As sludge from water treatment plants contains a considerable amount of titanium, both can create serious environmental concerns. In this study, the potential to recover titanium from drinking water treatment residue was explored through acid leaching technique. Statistical design for the optimization of titanium recovery was proposed using response surface methodology (RSM) based on a five-level central composite design (CCD). Three independent variables were investigated, namely the acid concentration (3 M-7 M), temperature (40 °C - 80 °C) and solid/liquid ratio (0.005-0.02 g/mL). According to the analysis of variance (ANOVA), the p-value (<0.0001) indicated the designed model was highly significant. Optimization using RSM gave the best fit between validated and predicted data as elucidated by the coefficient of determination with R2 values of 0.9965. However, acid concentration and solid/liquid ratio showed an initial increase in titanium recovery followed by recovery reduction with increasing concentration and ratio. Quadratic RSM predicted the maximum recovery of titanium to be 67.73% at optimal conditions of 5.5 M acid concentration, at a temperature of 62 °C with a solid/liquid ratio of 0.01 g/mL. The verification experiments gave an average of 66.23% recovery of titanium, thus indicating that the successfully developed model to predict the response. This process development has significant importance to reduce the cost of waste disposal, environmental protection, and recovery of economically valuable products.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links