Displaying all 5 publications

Abstract:
Sort:
  1. Allami T, Alamiery A, Nassir MH, Kadhum AH
    Polymers (Basel), 2021 Jul 27;13(15).
    PMID: 34372071 DOI: 10.3390/polym13152467
    The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for further applications in biomedical and environmental fields. In addition, other research focuses on widening the plastic features and adjusting the PU-polyimide ratio to create elastomer of the poly(urethane-imide). Regarding TPU- and PU-nanocomposite, numerous studies investigated the incorporation of inorganic nanofillers such as carbon or clay to incorporating TPU-nanocomposite in several applications. Additionally, the complete exfoliation was observed up to 5% and 3% of TPU-clay modified with 12 amino lauric acid and benzidine, respectively. PU-nanocomposite of 5 wt.% Cloisite®30B showed an increase in modulus and tensile strength by 110% and 160%, respectively. However, the nanocomposite PU-0.5 wt.% Carbone Nanotubes (CNTs) show an increase in the tensile modulus by 30% to 90% for blown and flat films, respectively. Coating PU influences stress-strain behavior because of the interaction between the soft segment and physical crosslinkers. The thermophysical properties of the TPU matrix have shown two glass transition temperatures (Tg's) corresponding to the soft and the hard segment. Adding a small amount of tethered clay shifts Tg for both segments by 44 °C and 13 °C, respectively, while adding clay from 1 to 5 wt.% results in increasing the thermal stability of TPU composite from 12 to 34 °C, respectively. The differential scanning calorimetry (DSC) was used to investigate the phase structure of PU dispersion, showing an increase in thermal stability, solubility, and flexibility. Regarding the electrical properties, the maximum piezoresistivity (10 S/m) of 7.4 wt.% MWCNT was enhanced by 92.92%. The chemical structure of the PU-CNT composite has shown a degree of agglomeration under disruption of the sp2 carbon structure. However, with extended graphene loading to 5.7 wt.%, piezoresistivity could hit 10-1 S/m, less than 100 times that of PU. In addition to electrical properties, the acoustic behavior of MWCNT (0.35 wt.%)/SiO2 (0.2 wt.%)/PU has shown sound absorption of 80 dB compared to the PU foam sample. Other nanofillers, such as SiO2, TiO2, ZnO, Al2O3, were studied showing an improvement in the thermal stability of the polymer and enhancing scratch and abrasion resistance.
  2. Gaaz TS, Sulong AB, Ansari MNM, Kadhum AAH, Al-Amiery AA, Nassir MH
    Materials (Basel), 2017 Jul 10;10(7).
    PMID: 28773134 DOI: 10.3390/ma10070777
    The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10(-3) J/mm², respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%.
  3. Gaaz TS, Sulong AB, Kadhum AAH, Nassir MH, Al-Amiery AA
    Materials (Basel), 2016 Jul 26;9(8).
    PMID: 28773741 DOI: 10.3390/ma9080620
    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.
  4. Gaaz TS, Sulong AB, Kadhum AAH, Al-Amiery AA, Nassir MH, Jaaz AH
    Molecules, 2017 May 20;22(5).
    PMID: 28531126 DOI: 10.3390/molecules22050838
    Nanotubular clay minerals, composed of aluminosilicate naturally structured in layers known as halloysite nanotubes (HNTs), have a significant reinforcing impact on polymer matrixes. HNTs have broad applications in biomedical applications, the medicine sector, implant alloys with corrosion protection and manipulated transportation of medicines. In polymer engineering, different research studies utilize HNTs that exhibit a beneficial enhancement in the properties of polymer-based nanocomposites. The dispersion of HNTs is improved as a result of pre-treating HNTs with acids. The HNTs' percentage additive up to 7% shows the highest improvement of tensile strength. The degradation of the polymer can be also significantly improved by doping a low percentage of HNTs. Both the mechanical and thermal properties of polymers were remarkably improved when mixed with HNTs. The effects of HNTs on the mechanical and thermal properties of polymers, such as ultimate strength, elastic modulus, impact strength and thermal stability, are emphasized in this study.
  5. Gaaz TS, Kadhum AAH, Michael PKA, Al-Amiery AA, Sulong AB, Nassir MH, et al.
    Polymers (Basel), 2017 Jun 06;9(6).
    PMID: 30970887 DOI: 10.3390/polym9060207
    A halloysite nanotubes⁻polyvinyl alcohol⁻polyvinylpyrrolidone (HNTs⁻PVA⁻PVP) composite has been investigated for a quite long time aiming at improving the physico⁻chemical characterization of HNTs. In this work, HNTs⁻PVA⁻PVP composite were prepared based on a unique procedure characterized by crosslinking two polymers with HNTs. The composite of two polymers were modified by treating HNTs with phosphoric acid (H₃PO₄) and by using malonic acid (MA) as a crosslinker. The composite was also treated by adding the dispersion agent sodium dodecyl sulfate (SDS). The HNTs⁻PVA⁻PVP composite shows better characteristics regarding agglomeration when HNTs is treated in advance by H₃PO₄. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), brunauer⁻emmett⁻teller (BET), size distribution, and atomic force microscopy (AFM) are used to characterize the physio-chemical properties of the composite. FTIR shows additional peaks at 2924.29, 1455.7, and 682.4 cm-1 compared to the neat HNTs due to adding MA. Despite that, the XRD spectra do not show a significant difference, the decrease in peak intensity could be attributed to the addition of semi-crystalline PVA and the amorphous PVP. The images taken by TEM and FESEM show the possible effects of MA on the morphology and internal feature of HNTs⁻PVA⁻PVP composite treated by MA by showing the deformation of the matrix. The BET surface area increased to 121.1 m²/g compared to the neat HNTs at 59.1 m²/g. This result, the second highest recorded result, is considered a breakthrough in enhancing the properties of HNTs⁻PVA⁻PVP composite, and treatment by MA crosslinking may attribute to the size and the number of the pores. The results from these techniques clearly showed that a significant change has occurred for treated HNTs⁻PVA⁻PVP composite where MA was added. The characterization of HNTs⁻PVA⁻PVP composite with and without treating HNTs and using crosslinker may lead to a better understanding of this new composites as a precursor to possible applications in the dentistry field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links