Displaying all 7 publications

Abstract:
Sort:
  1. Ng LY, Mohammad AW, Ng CY
    Adv Colloid Interface Sci, 2013 Sep;197-198:85-107.
    PMID: 23706348 DOI: 10.1016/j.cis.2013.04.004
    The performance of nanofiltration (NF) processes is mainly governed by factors such as the sieving effect (also known as size exclusion) and the Donnan effect (which depends on membrane surface charges). This has encouraged the development of new types of NF membranes using various kinds of polyelectrolytes as they have good pore-sealing effects and are able to improve the membrane surface charge density. Manipulation of the pH, supporting electrolyte concentration, type and concentration of polyelectrolyte solutions can significantly vary the characteristics of polyelectrolyte molecules thus improving their electrostatic interactions with the surrounding compounds. This is highly desired and useful when polyelectrolytes are to be incorporated in membrane surface modification as the charges formed can increase the membrane surface charge density, membrane surface coating stability and membrane selectivity. Most of the research discussed in this paper employed the special features of polyelectrolyte molecules to improve the performance of NF membranes in various applications. Various methods have been used to incorporate polyelectrolytes in order to improve NF membrane performance, such as static deposition, dynamic deposition, single layer coating, layer-by-layer (LbL) coating, and so forth. Some of the suitable devices or instruments used for polyelectrolyte-modified membranes are recommended and evaluated. In conclusion, polyelectrolyte-modified membranes offer significant improvements, can be produced in a short period of time, require less energy during membrane modification or fabrication and incur lower production costs. Thus, a full understanding of the factors affecting polyelectrolyte-modified membranes is very much desired and worth further detailed investigation in the near future.
  2. Ong CB, Mohammad AW, Ng LY
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33856-33869.
    PMID: 29943245 DOI: 10.1007/s11356-018-2557-2
    In this work, synergistic effect of solar photocatalysis integrated with adsorption process towards the degradation of Congo red (CR) was investigated via two different approaches using a photocatalytic membrane reactor. In the first approach, sequential treatments were conducted through the adsorption by graphene oxide (GO) and then followed by photocatalytic oxidation using Fe-doped ZnO nanocomposites (NCs). In the second approach, however, CR solution was treated by photocatalytic oxidation using Fe-doped ZnO/rGO NCs. These nanocomposites were synthesized by a sol-gel method. The NCs were characterized by X-ray diffraction (XRD), photoluminescence (PL), Fourier transmission infrared (FTIR), ultraviolet-visible (UV-vis) spectroscopy, and field emission scanning electron microscopy (FESEM). It was observed that Fe-doped ZnO could enhance the photoactivity of ZnO under solar light. When Fe-doped ZnO were decorated on GO sheets, however, this provided a surface enhancement for adsorption of organic pollutants. The photocatalytic performances using both approaches were evaluated based on the degradation of CR molecules in aqueous solution under solar irradiation. Nanofiltration (NF) performance in terms of CR residual removal from water and their fouling behavior during post-separation of photocatalysts was studied. Serious flux declined and thicker fouling layer on membrane were found in photocatalytic membrane reactor using Fe-doped ZnO/rGO NCs which could be attributed to the stronger π-π interaction between rGO and CR solution.
  3. Rani UA, Ng LY, Ng CY, Mahmoudi E
    Adv Colloid Interface Sci, 2020 Apr;278:102124.
    PMID: 32142942 DOI: 10.1016/j.cis.2020.102124
    Carbon quantum dots (CQDs) are a fascinating class of carbon nanoparticles with sizes around 10 nm. The unique properties of CQDs are low toxicity, chemical inertness, excellent biocompatibility, photo-induced electron transfer and highly tunable photoluminescence behaviour. Sustainable raw materials are commonly used for the fabrication of CQDs because they are cost-effective, eco-friendly and effective to minimise waste production. CQDs can be fabricated using laser ablation, microwave irradiation, hydrothermal reaction, electrochemical oxidation, reflux method and ultrasonication. These methods undergo several chemical reactions such as oxidation, carbonisation, pyrolysis and polymerisation processes to produce CQDs. Due to small particle sizes of CQDs, they possess strong tunable fluorescent properties and highly photo-luminescent emissions. It also contains oxygen-based functional groups and highly desired properties as semiconductor nanoparticles. Therefore, CQDs are promising nanomaterials for photo-catalysis, ions sensing, biological imaging, heavy metal detection, adsorption treatment, supercapacitor, membrane fabrication and water pollution treatment. This review paper will discuss the physical and chemical properties of CQDs, raw materials and methods used in the fabrication of CQDs, the stability of CQDs as well as their potential applications in wastewater treatment and biomedical field.
  4. Mahmoudi E, Azizkhani S, Mohammad AW, Ng LY, Benamor A, Ang WL, et al.
    J Environ Sci (China), 2020 Dec;98:151-160.
    PMID: 33097147 DOI: 10.1016/j.jes.2020.05.013
    Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.
  5. Mahmoudi E, Ang WL, Ng CY, Ng LY, Mohammad AW, Benamor A
    J Colloid Interface Sci, 2019 Apr 15;542:429-440.
    PMID: 30771638 DOI: 10.1016/j.jcis.2019.02.023
    Graphene oxide (GO) has gained popularity in scientific research and industry due to its superior properties, which can be controlled by the synthesis method and graphite feedstock. Despite the availability of different graphite sources, most of the reported studies used natural graphite flake (NGF) as a source of oxidation for GO synthesis. The effect of various alternative graphite feedstocks on the GO properties has not been investigated systematically. This study investigated the influence of graphite feedstock (natural and synthetic) on the characteristics and properties of GO via modified Hummer's method. Natural graphite flake (NGF), natural graphite powder (NGP), and synthetic graphite powder (SGP) were used as graphite feedstock in the study. Energy-dispersive X-ray analysis revealed that the GO produced using NGP (NGP-GO) has higher oxygen to carbon ratio in comparison to GO made from NGF (NGF-GO) and GO made from SGP (SGP-GO) (35.4, 32.7, and 32.2%, respectively), indicating higher oxidation degree for NGP-GO. Zeta potential analysis for NGP-GO, NGF-GO and SGP-GO were -47.8, -42.6 and -39.4 mV, respectively. Morphological analysis revealed that the structures of GO varied according to graphite feedstock, in which (NGP-GO) and (NGF-GO) were highly exfoliated (single-layered structure) while (SGP-GO) showed a multi-layered structure. Further testing was conducted by decorating silver (Ag) nanoparticles on the GO. The results showed that Ag could be uniformly decorated (no agglomeration) on the surface of GO-NGP, due to the presence of more functional groups. Subsequently, the antimicrobial property of Ag-NGP was the highest with an inhibition diameter of 14.7 ± 1.2 mm (30% higher than the other samples). In conclusion, the properties of GO can be tuned by selecting the suitable graphite feedstock and this might pave the way to new developments in the GO-based applications.
  6. Mahmoudi E, Ng LY, Ang WL, Chung YT, Rohani R, Mohammad AW
    Sci Rep, 2019 02 04;9(1):1216.
    PMID: 30718690 DOI: 10.1038/s41598-018-38060-x
    Nanomaterials can be incorporated in the synthesis of membrane to obtain mixed-matrix membrane with marked improvement in properties and performance. However, stability and dispersion of the nanomaterials in the membrane matrix, as well as the need to use high ratio of nanomaterials for obvious improvement of membrane properties, remain a major hurdle for commercialization. Hence, this study aims to investigate the improvement of polyamide 6,6 membrane properties with the incorporation of silver nanoparticles decorated on graphene oxide (Ag-GO) nanoplates and at the same time focus is given to the issues above. Graphene oxide nanoplates were synthesized using the modified Hummers' method and decorated with silver before embedded into the polyamide 6,6 matrix. Physicochemical characterizations were conducted on both nanoplates and the mixed-matrix Ag-GO polyamide 6,6 membrane. The issues of Ag agglomeration and leaching were not observed, which could be attributed to the decoration of Ag on GO that helped to disperse the nanomaterials and provided a better anchor point for the attachment of Ag nanoparticles. The synthesized membrane showed marked improvement regarding flux (135% increment) and antifouling (40% lower irreversible fouling), which could be ascribed to the more negative charge of membrane surface (-14 ± 6 to -31 ± 3.8 mV) and hydrophilicity (46% enhancement) of the membranes. With minimal embedment of Ag nanoparticles, the membrane showed superior antibacterial property where the E. coli bacteria could not form a single colony on the membrane surface. Overall, the decoration of Ag on GO nanoplates could be a promising approach to resolve the agglomeration and leaching issues as well as reduce the amount of precious Ag in the synthesis of Ag-GO polyamide 6,6 membrane.
  7. Shazleen SS, Foong Ng LY, Ibrahim NA, Hassan MA, Ariffin H
    Polymers (Basel), 2021 Sep 23;13(19).
    PMID: 34641040 DOI: 10.3390/polym13193226
    This work investigated the combined effects of CNF nucleation (3 wt.%) and PLA-g-MA compatibilization at different loadings (1-4 wt.%) on the crystallization kinetics and mechanical properties of polylactic acid (PLA). A crystallization kinetics study was done through isothermal and non-isothermal crystallization kinetics using differential scanning calorimetry (DSC) analysis. It was shown that PLA-g-MA had some effect on nucleation as exhibited by the value of crystallization half time and crystallization rate of the PLA/PLA-g-MA, which were increased by 180% and 172%, respectively, as compared to neat PLA when isothermally melt crystallized at 100 °C. Nevertheless, the presence of PLA-g-MA in PLA/PLA-g-MA/CNF3 nanocomposites did not improve the crystallization rate compared to that of uncompatibilized PLA/CNF3. Tensile strength was reduced with the increased amount of PLA-g-MA. Contrarily, Young's modulus values showed drastic increment compared to the neat PLA, showing that the addition of the PLA-g-MA contributed to the rigidity of the PLA nanocomposites. Overall, it can be concluded that PLA/CNF nanocomposite has good performance, whereby the addition of PLA-g-MA in PLA/CNF may not be necessary for improving both the crystallization kinetics and tensile strength. The addition of PLA-g-MA may be needed to produce rigid nanocomposites; nevertheless, in this case, the crystallization rate of the material needs to be compromised.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links