Antioxidant and α-amylase inhibitor peptides were successfully extracted from Pinto bean protein isolate (PBPI) using Protamex. A factorial design experiment was conducted and the effects of extraction time, pH and temperature were studied. pH 7.5, extraction time of 1h, S/E ratio of 10 (w/w) and temperature of 50 °C gave the highest antioxidant activities (i.e., ABTS scavenging activity (53.3%) and FRAP value (3.71 mM)), whereas pH 6.5 with the same extraction time, S/E ratio and temperature, gave the highest α-amylase inhibitory activity (57.5%). It was then fractioned using membrane ultrafiltration with molecular weight cutoffs of 100, 50, 30, 10 and 3 kDa. Peptide fraction <3 kDa, which exhibited the highest antioxidant activities (i.e., ABTS (42.2%) and FRAP (0.81 mM)) and α-amylase inhibitory activity (62.1%), was then subjected to LCMS and MS/MS analyses. Six sequences were identified for antioxidant peptides, whereas seven peptides for α-amylase inhibitor.
Five Pinto bean peptides with α-amylase and angiotensin converting enzyme (ACE) inhibitory activities were successfully identified using the integrated bioinformatics approach. By using PEAKS studio, 511 peptide sequences were first shortlisted based on their de novo sequence property and average local confidence (ALC) yield of ≥60%. Subsequently, only five peptides were found to have high potential (score ≥0.80) for contributing bioactivy. The important sites which were potentially bound by the peptides: (a) Trp58, Trp59, Tyr 62, Asp96, Arg195, Asp197, Glu233, His299, Asp300 and His305 for α-amylase; (b) His353, Ala354, His383, Glu384, His387, Glu411, Lys511, His513, Tyr520 and Tyr523 for ACE had corresponded to the catalytic and substrate binding sites of the two enzymes. A validation assay was then conducted and IC50 values were determined. The range of the values for α-amylase inhibitory activity was 10.03-23.33mM, whereas the values for ACE inhibitory activity were of 1.52-31.88μM.
The objective of this study was to screen and identify α-amylase inhibitor peptides from Pinto bean. Five Pinto bean bioactive peptides were successfully identified: PPHMLP (P1), PLPWGAGF (P3), PPHMGGP (P6), PLPLHMLP (P7) and LSSLEMGSLGALFVCM (P9). Based on ELISA results, their promising optical density values were 1.27; 3.71, 1.67, 3.20 and 1.03, respectively, which indicated the binding interaction between the peptide and α-amylase occurred. The highest inhibitory activity (66.72%) of the chemically synthesized peptide was shown in SyP9 followed by SyP1 (48.86%), SyP3 (31.17%), SyP7 (27.88%) and SyP6 (23.96%). The IC50 values were 1.97, 8.96, 14.63, 18.45 and 20.56mgml(-1), respectively. Structure activity relationship study revealed that α-amylase was inhibited due to its residues of Ala230, Asp229, Asp326, Tyr54, Met195, Leu194 and His233 were bound. On the other hand, the residues of PBBP (i.e. histidine, proline and methionine) were found to have the highest potency in the binding interaction.
Novel bioactive peptides from camel milk protein hydrolysates (CMPH) were identified and tested for inhibition of cholesterol esterase (CEase), and their possible binding mechanisms were elucidated by molecular docking. Papain-generated CMPH showed the highest degree of hydrolysis. All CMPH produced upon enzymatic degradation demonstrated a dramatic enhancement of CEase inhibition compared with intact camel milk proteins, with papain-generated hydrolysate P9 displaying the highest inhibition. Peptide identification and their modeling through PepSite 2 revealed that among 20 potential bioactive peptides in alcalase-generated hydrolysate A9, only 3 peptides, with sequences KFQWGY, SQDWSFY, and YWYPPQ, showed the highest binding toward CEase catalytic sites. Among 43 peptides in 9-h papain-generated hydrolysate P9, 4 peptides were found to be potent CEase inhibitors. Molecular docking revealed that WPMLQPKVM, CLSPLQMR, MYQQWKFL, and CLSPLQFR from P9 hydrolysates were able to bind to the active site of CEase with good docking scores and molecular mechanics-generalized born surface area binding energies. Overall, this is the first study reporting CEase inhibitory potential of peptides generated from milk proteins.
Lymphatic filariasis is a neglected parasitic disease that affects millions in tropical and subtropical countries and is caused by Wuchereria and Brugia species. Specific and sensitive detection methods are essential in mapping infected areas where rapid tests are needed to cover underdeveloped and remote regions, which facilitates eliminating the disease as a public health problem. A few commercialized rapid tests based on antigen or antibody detection are available, but the former only detects infection by Wuchereria species and cross-reacts with nonlymphatic filaria, whereas antibody detection might provide positive results of previous infection. Here, we report the production of three different recombinant immunoglobulin gamma (IgG)1 antibodies based on scFvs previously generated via human antibody phage display technology, that is, anti-BmR1 clone 4, anti-BmXSP clone 5B, and anti-BmXSP clone 2H2. The scFv sequences were cloned into a pCMV-IgG1 vector, then transfected into a HEK293F cell line. The generated antibodies were found to be able to bind to their respective targets even at relatively low concentration. Conjugation of Fc to scFv induces binder stability and provides multiple labeling sites for probes and signaling molecules that can be used in rapid tests.