Displaying all 5 publications

Abstract:
Sort:
  1. Nguyen MT, Denniston R, Nguyen HT, Hoang TA, Ross H, So AD
    PLoS One, 2014;9(1):e87272.
    PMID: 24489886 DOI: 10.1371/journal.pone.0087272
    Illicit trade carries the potential to magnify existing tobacco-related health care costs through increased availability of untaxed and inexpensive cigarettes. What is known with respect to the magnitude of illicit trade for Vietnam is produced primarily by the industry, and methodologies are typically opaque. Independent assessment of the illicit cigarette trade in Vietnam is vital to tobacco control policy. This paper measures the magnitude of illicit cigarette trade for Vietnam between 1998 and 2010 using two methods, discrepancies between legitimate domestic cigarette sales and domestic tobacco consumption estimated from surveys, and trade discrepancies as recorded by Vietnam and trade partners. The results indicate that Vietnam likely experienced net smuggling in during the period studied. With the inclusion of adjustments for survey respondent under-reporting, inward illicit trade likely occurred in three of the four years for which surveys were available. Discrepancies in trade records indicate that the value of smuggled cigarettes into Vietnam ranges from $100 million to $300 million between 2000 and 2010 and that these cigarettes primarily originate in Singapore, Hong Kong, Macao, Malaysia, and Australia. Notable differences in trends over time exist between the two methods, but by comparison, the industry estimates consistently place the magnitude of illicit trade at the upper bounds of what this study shows. The unavailability of annual, survey-based estimates of consumption may obscure the true, annual trend over time. Second, as surveys changed over time, estimates relying on them may be inconsistent with one another. Finally, these two methods measure different components of illicit trade, specifically consumption of illicit cigarettes regardless of origin and smuggling of cigarettes into a particular market. However, absent a gold standard, comparisons of different approaches to illicit trade measurement serve efforts to refine and improve measurement approaches and estimates.
  2. Khezri R, Hosseini S, Lahiri A, Motlagh SR, Nguyen MT, Yonezawa T, et al.
    Int J Mol Sci, 2020 Oct 02;21(19).
    PMID: 33023274 DOI: 10.3390/ijms21197303
    Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs). Introducing redox additives into electrolytes is an effective approach to promote battery performance. With the addition of 450 ppm KPS, remarkable improvement in anodic currents corresponding to zinc (Zn) dissolution and limited passivation of the Zn surface is observed, thus indicating its strong effect on the redox reaction of Zn. Besides, the addition of 450 ppm KPS reduces the corrosion rate of Zn, enhances surface reactions and decreases the solution resistance. However, excess KPS (900 and 1350 ppm) has a negative effect on rechargeable ZAFBs, which leads to a shorter cycle life and poor cyclability. The rechargeable ZAFB, using 450 ppm KPS, exhibits a highly stable charge/discharge voltage for 800 cycles. Overall, KPS demonstrates great promise for the enhancement of the charge/discharge performance of rechargeable ZABs.
  3. Ingavale S, Gopalakrishnan M, Marbaniang P, Lao-Atiman W, Mohamad AA, Nguyen MT, et al.
    Nanoscale, 2024 May 03.
    PMID: 38699850 DOI: 10.1039/d4nr00799a
    Identifying highly stable, cost-effective, platinum-free, and efficient electrocatalysts for the oxygen reduction reaction (ORR) remains a formidable challenge. The ORR is important for advancing fuel cell and zinc-air battery (ZAB) technologies towards cost-efficiency and environmental sustainability. This work presents the utilization of economically viable materials through a straightforward synthesis process, exhibiting the development of efficient Mo2C/Fe3C-NC catalysts ingeniously derived from phosphomolybdic acid (PMA) and iron phthalocyanine (FePc). The results demonstrate that the optimized Mo2C/Fe3C-NC3 catalysts exhibit remarkable electrochemical performance, evidenced by an impressive onset potential of ∼1.0 V versus RHE, a half-wave potential of 0.89 V, and a superior current density of about 6.2 mA cm-2. As for their performance in ZABs, the optimized catalysts reach a peak power density of 142 mW cm-2 at a current density of 200 mA cm-2. This synergy, coupled with the uniform distribution of Mo2C and Fe3C nanoparticles, greatly enhances the active catalytic sites and promotes electrolyte diffusion. Our approach diverges from traditional methods by employing an in situ self-assembled heterostructure of Mo2C/Fe3C on nitrogen-doped carbon tubes, avoiding the conventional high-temperature hydrogen gas reduction process. Beyond serving as feasible alternatives to commercially available Pt/C catalysts, these materials hold promise for large-scale production owing to their affordability and the simplicity of the synthesis technique. Such a breakthrough paves the way towards the realization of sustainable energy technologies and lays the groundwork for further exploration into amplifying the scalability and efficiency of ORR catalysts.
  4. Kamsani SH, Middeldorp ME, Chiang G, Stefil M, Evans S, Nguyen MT, et al.
    Heart Rhythm O2, 2024 Jun;5(6):341-350.
    PMID: 38984365 DOI: 10.1016/j.hroo.2024.05.003
    BACKGROUND: Inpatient monitoring is recommended for sotalol initiation.

    OBJECTIVE: The purpose of this study was to assess the safety of outpatient sotalol commencement.

    METHODS: This is a multicenter, retrospective, observational study of patients initiated on sotalol in an outpatient setting. Serial electrocardiogram monitoring at day 3, day 7, 1 month, and subsequently as clinically indicated was performed. Corrected QT (QTc) interval and clinical events were evaluated.

    RESULTS: Between 2008 and 2023, 880 consecutive patients who were commenced on sotalol were evaluated. Indications were atrial fibrillation/flutter in 87.3% (n = 768), ventricular arrhythmias in 9.9% (n = 87), and other arrhythmias in 2.8% (n = 25). The daily dosage at initiation was 131.0 ± 53.2 mg/d. The QTc interval increased from baseline (431 ± 32 ms) to 444 ± 37 ms (day 3) and 440 ± 33 ms (day 7) after sotalol initiation (P < .001). Within the first week, QTc prolongation led to the discontinuation of sotalol in 4 and dose reduction in 1. No ventricular arrhythmia, syncope, or death was observed during the first week. Dose reduction due to asymptomatic bradycardia occurred in 3 and discontinuation due to dyspnea in 3 within the first week. Overall, 1.1% developed QTc prolongation (>500 ms/>25% from baseline); 4 within 3 days, 1 within 1 week, 4 within 60 days, and 1 after >3 years. Discontinuation of sotalol due to other adverse effects occurred in 41 patients within the first month of therapy.

    CONCLUSION: Sotalol initiation in an outpatient setting with protocolized follow-up is safe, with no recorded sotalol-related mortality, ventricular arrhythmias, or syncope. There was a low incidence of significant QTc prolongation necessitating discontinuation within the first month of treatment. Importantly, we observed a small incidence of late QT prolongation, highlighting the need for vigilant outpatient surveillance of individuals on sotalol.

  5. Andreeva DV, Vedekhina TS, Gostev AS, Dezhenkova LG, Volodina YL, Markova AA, et al.
    Eur J Med Chem, 2024 Mar 15;268:116222.
    PMID: 38387333 DOI: 10.1016/j.ejmech.2024.116222
    G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links