METHODS: We propose a Bayesian joint modelling approach to determine mortality due to cognitive impairment via repeated measures of 3MS scores trajectories over a 21-year follow-up period. Data for this study are taken from the Osteoporotic Fracture longitudinal study among women aged 65+ which started in 1986-88.
RESULTS: The standard relative risk model from the analyses with a baseline 3MS score after adjusting for all the significant covariates demonstrates that, every unit decrease in a 3MS score corresponds to a non-significant 1.059 increase risk of mortality with a 95% CI of (0.981, 1.143), while the extended model results in a significant 0.09% increased risk in mortality. The joint modelling approach found a strong association between the 3MS scores and the risk of mortality, such that, every unit decrease in 3MS scores results in a 1.135 (13%) increased risk of death via cognitive impairment with a 95% CI of (1.056, 1.215).
CONCLUSION: It has been demonstrated that a decrease in 3MS results has a significant increase risk of mortality due to cognitive impairment via joint modelling, but insignificant when considered under the standard relative risk approach.
Methods: This research utilized data from the Demographic and Health Surveys 2014, 2016, 2014-2015, 2015-2016, and 2016 from Ghana, Ethiopia, Rwanda, Tanzania, and Uganda, respectively. Respondents were women aged between 15 and 49 years. Hemoglobin levels were measured by HemoCue hemoglobin meter. 45,299 women data were extracted from the five countries with 4,644, 14,923, 6,680, 13,064, and 5,988 from Ghana, Ethiopia, Rwanda, Tanzania, and Uganda, respectively. Association between anemia and selected predictive variables was assessed using Pearson's chi-square test statistic. Poisson regression with robust standard errors was used to estimate the prevalence rate ratios of developing anemia. The deviance goodness of fit test was employed to test the fit of the Poisson model to the data set.
Results: There was a statistically significant difference in prevalence of 1,962 (42.3%), 3,527 (23.6%), 1,284 (19.3%), 5,857 (44.8%), and 1,898 (31.7%) for Ghana, Ethiopia, Rwanda, Tanzania, and Uganda, respectively, χ 2 = 2,181.86 and p value < 0.001. Parity, pregnancy status, and contraceptives significantly increased the prevalence rate ratio of a woman developing anemia. Women in Ethiopia with a parity of six or more were 58% more likely to develop anemia than those with parity of zero. Tanzanian women who were pregnant had a 14% increased rate ratio of developing anemia. Factors that significantly decreased anemia in this study were wealth index, women's age, and women's highest level of education. Women who were in the higher education category in Ethiopia were 57% less likely to develop anemia. Ugandan women in the richest category of the wealth index were 28% less likely to develop anemia. Rwandan women in the middle category of the wealth index were 20% less likely to develop anemia. Women who were within the 45-49 age category in Ethiopia were 48% less likely to develop anemia.
Conclusion: The individual country governments should encourage the implementation of increasing female enrollment in higher education. Women in their reproductive age should be encouraged to use modern contraceptives to reduce their anemia prevalence.