Case Report: This report describes a rare case of metastatic adenocarcinoma of the temporal bone causing Collet-Sicard syndrome, presenting with hearing loss, headache and ipsilateral cranial nerve palsies. The patient was a 68-year old woman initially diagnosed with extensive mastoiditis and later confirmed as having metastatic adenocarcinoma of the temporal bone, based on histopathologic findings.
Conclusion: Clinical presentation of metastatic carcinoma of the temporal bone can be overshadowed by infective or inflammatory conditions. This case report is to emphasize the point that a high index of clinical suspicion is necessary for the early diagnosis of this aggressive disease which carries relatively poor prognosis. This report highlights that it is crucial to suspect malignant neoplasm in patients with hearing loss, headache and cranial nerve palsies.
OBJECTIVE: To evaluate the initial staging discrepancy between conventional contrasted computed tomography (CT) and 18F-fluorodeoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) and its impact on management plans for head and neck malignancies.
DESIGN AND SETTING: Prospective cross-sectional study in two tertiary-level hospitals.
METHODS: This study included 30 patients with primary head and neck malignant tumors who underwent contrasted computed tomography and whole-body 18F-FDG PET/CT assessments. The staging and treatment plans were compared with the incremental information obtained after 18F-FDG PET/CT.
RESULTS: 18F-FDG PET/CT was found to raise the stage in 33.3% of the cases and the treatment intent was altered in 43.3% of them, while there was no management change in the remaining 56.7%. 18F-FDG PET/CT had higher sensitivity (96% versus 89.2%) and accuracy (93% versus 86.7%) than conventional contrast-enhanced computed tomography.
CONCLUSION: Our study demonstrated that 18F-FDG PET/CT had higher sensitivity and accuracy for detecting head and neck malignancy, in comparison with conventional contrast-enhanced computed tomography. 18F-FDG PET/CT improved the initial staging and substantially impacted the management strategy for head and neck malignancies.
OBJECTIVE: We aimed to correlate the ability of these modalities to differentiate Probable AD and Possible AD using the clinical diagnosis as a gold standard. We also investigated the correlation of severity of amyloid deposit in the brain with the diagnosis of AD.
METHODS: A retrospective study of 47 subjects (17 Probable AD and 30 Possible AD) who were referred for PET/CT amyloid scans to our centre was conducted. Hypoperfusion in the temporo-parietal lobes on Tc99m-HMPAO SPECT and loss of grey-white matter contrast in cortical regions on PET/CT Amyloid scans indicating the presence of amyloid β deposit were qualitatively interpreted as positive for AD. SPECT and PET/CT were also read in combination (Combo reading). The severity of amyloid β deposit was semiquantitatively assessed in a visual binary method using a scale of Grade 0-4. The severity of amyloid β deposit was assessed in a visual binary method and a semi-quantitative method using a scale of Grade 0-4.
RESULTS: There was significant correlation of Tc99m-HMPAO SPECT, PET/CT amyloid findings and Combo reading with AD. The sensitivity, specificity, PPV and NPV were 87.5%, 73.7%, 58.3% and 93.3% (SPECT); 62.5%, 77.4%, 58.8% and 80.0% (PET/CT) and 87.5%, 84.2%, 70.0% and 30.0% (Combo reading) respectively. The grade of amyloid deposition was not significantly correlated with AD (Spearman's correlation, p=0.687).
CONCLUSION: There is an incremental benefit in utilizing PET/CT amyloid imaging in cases with atypical presentation and indeterminate findings on conventional imaging of Alzheimer's disease.
METHODS: In this study, prior to synthesis, quality control analysis method for 18F-Fluorocholine was developed and validated, by adapting the equipment set-up used in 18F-Fluorodeoxyglucose (18FFDG) routine production. Quality control on the 18F-Fluorocholine was performed by means of pH, radionuclidic identity, radio-high performance liquid chromatography equipped with ultraviolet, radio- thin layer chromatography, gas chromatography and filter integrity test.
RESULTS: Post-synthesis; the pH of 18F-Fluorocholine was 6.42 ± 0.04, with half-life of 109.5 minutes (n = 12). The radiochemical purity was consistently higher than 99%, both in radio-high performance liquid chromatography equipped with ultraviolet (r-HPLC; SCX column, 0.25 M NaH2PO4: acetonitrile) and radio-thin layer chromatography method (r-TLC). The calculated relative retention time (RRT) in r-HPLC was 1.02, whereas the retention factor (Rf) in r-TLC was 0.64. Potential impurities from 18F-Fluorocholine synthesis such as ethanol, acetonitrile, dimethylethanolamine and dibromomethane were determined in gas chromatography. Using our parameters, (capillary column: DB-200, 30 m x 0.53 mm x 1 um) and oven temperature of 35°C (isothermal), all compounds were well resolved and eluted within 3 minutes. Level of ethanol and acetonitrile in 18F-Fluorocholine were detected below threshold limit; less than 5 mg/ml and 0.41 mg/ml respectively. Meanwhile, dimethylethanolamine and dibromomethane were undetectable.
CONCLUSION: A convenient, efficient and reliable quality control analysis work-up procedure for 18FFluorocholine has been established and validated to comply all the release criteria. The convenient method of quality control analysis may provide a guideline to local GMP radiopharmaceutical laboratories to start producing 18F-Fluorocholine as a tracer for prostate cancer imaging.
METHODS: In the previous study, the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine in the reactor was conducted at atmospheric pressure (0 atm) and shorter duration time. In this study, however, the azeotropic drying of non-carried-added (n.c.a) 18FFluorine was made at a high vacuum pressure (- 0.65 to - 0.85 bar) with an additional time of 30 seconds. At the end of the synthesis, the mean radiochemical yield was statistically compared between the two azeotropic drying conditions so as to observe whether the improvement made was significant to the radiochemical yield.
RESULTS: From the paired sample t-test analysis, the improvement done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine was statistically significant (p < 0.05). With the improvement made, the 18F-Fluorcholine radiochemical yield was found to have increase by one fold.
CONCLUSION: Improved 18F-Fluorocholine radiochemical yields were obtained after the improvement had been done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine. It was also observed that improvement made to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine did not affect the 18F-Fluorocholine quality control analysis.
METHODS: Nine subjects were injected intravenously with the mean (18)F-FDG dose of 292.42 MBq prior to whole body PET/CT scanning. Kidneys and urinary bladder doses were estimated by using two approaches which are the total injected activity of (18)F-FDG and organs activity concentration of (18)F-FDG based on drawn ROI with the application of recommended dose coefficients for (18)F-FDG described in the ICRP 80 and ICRP 106.
RESULTS: The mean percentage difference between calculated dose and measured dose ranged from 98.95% to 99.29% for the kidneys based on ICRP 80 and 98.96% to 99.32% based on ICRP 106. Whilst, the mean percentage difference between calculated dose and measured dose was 97.08% and 97.27% for urinary bladder based on ICRP 80 while 96.99% and 97.28% based on ICRP 106. Whereas, the range of mean percentage difference between calculated and measured organ doses derived from ICRP 106 and ICRP 80 for kidney doses were from 17.00% to 40.00% and for urinary bladder dose was 18.46% to 18.75%.
CONCLUSIONS: There is a significant difference between calculated dose and measured dose. The use of organ activity estimation based on drawn ROI and the latest version of ICRP 106 dose coefficient should be explored deeper to obtain accurate radiation dose to patients.
Case Report: Three cases that had been initially presented as a cystic neck lesion in which a benign etiology was considered primarily were compiled in this study. PTC was only diagnosed after surgical excision of these cystic neck lesions in the first two cases, and after performing fine needle aspiration cytology (FNAC) and an 18fluorine-fluorodeoxyglucose positron emission tomography computed tomography (18F-FDG-PET CT) scan in the latter case.
Conclusion: PTC can sometimes present as a cystic neck mass; a presentation which is usually related to a benign lesion. This case series emphasizes that patients who appear to have a solitary cystic neck mass must be treated with a high index of clinical suspicion. Although not a first-line imaging modality, 18F-FDG-PET can be extremely useful in assessing patients with a cystic neck lesion, where diagnosis is still uncertain after standard investigations such as ultrasonography and FNAC have been performed.
OBJECTIVE: A review of the literature on Tregs in acute leukaemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukaemias (ALLs).
RESULTS: Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean±SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL.
DISCUSSION: Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies, tumour-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumour-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal its mysteries and their impact on clinical significance.
METHODS: Here we describe the clinical course of 10 consecutive TBE patients with outcome assessment at discharge and after 12 month using a modified Rankin Scale. Patients underwent cerebral MRI after confirmation of diagnosis and before discharge. (18)F-FDG PET/CT scans were performed within day 5 to day 14 after TBE diagnosis. Extended analysis of coagulation parameters by thrombelastometry (ROTEM® InTEM, ExTEM, FibTEM) was performed every other day after confirmation of TBE diagnosis up to day 10 after hospital admission or discharge.
RESULTS: All patients presented with a meningoencephalitic course of disease. Cerebral MRI scans showed unspecific findings at predilection areas in 3 patients. (18)F-FDG PET/CT showed increased glucose utilization in one patient and decreased (18)F-FDG uptake in seven patients. Changes in coagulation measured by standard parameters and thrombelastometry were not found in any of the patients.
DISCUSSION: Glucose hypometabolism was present in 7 out of 10 TBE patients reflecting neuronal dysfunction in predilection areas of TBE virus infiltration responsible for development of clinical signs and symptoms.