Displaying all 5 publications

Abstract:
Sort:
  1. Katayama A, Kume T, Komatsu H, Saitoh TM, Ohashi M, Nakagawa M, et al.
    J Plant Res, 2013 Jul;126(4):505-15.
    PMID: 23283581 DOI: 10.1007/s10265-012-0544-0
    To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.
  2. Nakanishi K, Sasaki S, Kiang AK, Goh J, Kakisawa H, Ohashi M, et al.
    Chem Pharm Bull (Tokyo), 1965 Jul;13(7):882-90.
    PMID: 5867816
  3. Kume T, Ohashi M, Makita N, Kho LK, Katayama A, Endo I, et al.
    Tree Physiol, 2018 12 01;38(12):1927-1938.
    PMID: 30452737 DOI: 10.1093/treephys/tpy124
    Clarifying the dynamics of fine roots is critical to understanding carbon and nutrient cycling in forest ecosystems. An optical scanner can potentially be used in studying fine-root dynamics in forest ecosystems. The present study examined image analysis procedures suitable for an optical scanner having a large (210 mm × 297 mm) root-viewing window. We proposed a protocol for analyzing whole soil images obtained by an optical scanner that cover depths of 0-210 mm. We tested our protocol using six observers with different experience in studying roots. The observers obtained data from the manual digitization of sequential soil images recorded for a Bornean tropical forest according to the protocol. Additionally, the study examined the potential tradeoff between the soil image size and accuracy of estimates of fine-root dynamics in a simple exercise. The six observers learned the protocol and obtained similar temporal patterns of fine-root growth and biomass with error of 10-20% regardless of their experience. However, there were large errors in decomposition owing to the low visibility of decomposed fine roots. The simple exercise revealed that a smaller root-viewing window (smaller than 60% of the original window) produces patterns of fine-root dynamics that are different from those for the original window size. The study showed the high applicability of our image analysis approach for whole soil images taken by optical scanners in estimating the fine-root dynamics of forest ecosystems.
  4. Katayama A, Kume T, Komatsu H, Ohashi M, Matsumoto K, Ichihashi R, et al.
    Tree Physiol, 2014 May;34(5):503-12.
    PMID: 24876294 DOI: 10.1093/treephys/tpu041
    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links