METHODS: The study included 143 new cases of HIV-1 infection. Viral RNA was extracted from stocked plasma samples and sequenced for the pol and the env regions using the Sanger method. Near-full length sequencing using MiSeq was performed in 3 patients who were suspected to be infected with recombinant HIV-1. Phylogenetic analysis was performed using the neighbor-joining method and Bayesian Markov chain Monte Carlo method.
RESULTS: MSM was the main transmission route in the previous and current studies. However, heterosexual route showed a significant increase in recent years. Phylogenetic analysis documented three taxa; Mongolian B, Korean B, and CRF51_01B, though the former two were also observed in the previous study. CRF51_01B, which originated from Singapore and Malaysia, was confirmed by near-full length sequencing. Although these strains were mainly detected in MSM, they were also found in increasing numbers of heterosexual males and females. Bayesian phylogenetic analysis estimated transmission of CRF51_01B into Mongolia around early 2000s. An extended Bayesian skyline plot showed a rapid increase in the effective population size of Mongolian B cluster around 2004 and that of CRF51_01B cluster around 2011.
CONCLUSIONS: HIV-1 infection might expand to the general population in Mongolia. Our study documented a new cluster of HIV-1 transmission, enhancing our understanding of the epidemiological status of HIV-1 in Mongolia.
METHODS: Adults > 18 years of age on second-line ART for ≥ 6 months were eligible. Cross-sectional data on HIV viral load (VL) and genotypic resistance testing were collected or testing was conducted between July 2015 and May 2017 at 12 Asia-Pacific sites. Virological failure (VF) was defined as VL > 1000 copies/mL with a second VL > 1000 copies/mL within 3-6 months. FASTA files were submitted to Stanford University HIV Drug Resistance Database and RAMs were compared against the IAS-USA 2019 mutations list. VF risk factors were analysed using logistic regression.
RESULTS: Of 1378 patients, 74% were male and 70% acquired HIV through heterosexual exposure. At second-line switch, median [interquartile range (IQR)] age was 37 (32-42) years and median (IQR) CD4 count was 103 (43.5-229.5) cells/µL; 93% received regimens with boosted protease inhibitors (PIs). Median duration on second line was 3 years. Among 101 patients (7%) with VF, CD4 count > 200 cells/µL at switch [odds ratio (OR) = 0.36, 95% confidence interval (CI): 0.17-0.77 vs. CD4 ≤ 50) and HIV exposure through male-male sex (OR = 0.32, 95% CI: 0.17-0.64 vs. heterosexual) or injecting drug use (OR = 0.24, 95% CI: 0.12-0.49) were associated with reduced VF. Of 41 (41%) patients with resistance data, 80% had at least one RAM to nonnucleoside reverse transcriptase inhibitors (NNRTIs), 63% to NRTIs, and 35% to PIs. Of those with PI RAMs, 71% had two or more.
CONCLUSIONS: There were low proportions with VF and significant RAMs in our cohort, reflecting the durability of current second-line regimens.
METHODS: Prospectively collected longitudinal data from patients in Thailand, Hong Kong, Malaysia, Japan, Taiwan, and South Korea were provided for analysis. Covariates included demographics, hepatitis B and C coinfections, baseline CD4 T lymphocyte count, and plasma HIV-1 RNA levels. Clinical deterioration (a new diagnosis of Centers for Disease Control and Prevention category B/AIDS-defining illness or death) was assessed by proportional hazards models. Surrogate endpoints were 12-month change in CD4 cell count and virologic suppression post therapy, evaluated by linear and logistic regression, respectively.
RESULTS: Of 1105 patients, 1036 (93.8%) infected with CRF01_AE or subtype B were eligible for inclusion in clinical deterioration analyses and contributed 1546.7 person-years of follow-up (median: 413 days, interquartile range: 169-672 days). Patients >40 years demonstrated smaller immunological increases (P = 0.002) and higher risk of clinical deterioration (hazard ratio = 2.17; P = 0.008). Patients with baseline CD4 cell counts >200 cells per microliter had lower risk of clinical deterioration (hazard ratio = 0.373; P = 0.003). A total of 532 patients (48.1% of eligible) had CD4 counts available at baseline and 12 months post therapy for inclusion in immunolgic analyses. Patients infected with subtype B had larger increases in CD4 counts at 12 months (P = 0.024). A total of 530 patients (48.0% of eligible) were included in virological analyses with no differences in response found between genotypes.
CONCLUSIONS: Results suggest that patients infected with CRF01_AE have reduced immunologic response to therapy at 12 months, compared with subtype B-infected counterparts. Clinical deterioration was associated with low baseline CD4 counts and older age. The lack of differences in virologic outcomes suggests that all patients have opportunities for virological suppression.
METHODS: Logistic regression analysis was used to distinguish associated current smoking characteristics. Five-year predictive risks of CVD, CHD and MI and the impact of simulated interventions were calculated utilizing the Data Collection on Adverse Effects of Anti-HIV Drugs Study (D:A:D) algorithm.
RESULTS: Smoking status data were collected from 4274 participants and 1496 of these had sufficient data for simulated intervention calculations. Current smoking prevalence in these two groups was similar (23.2% vs. 19.9%, respectively). Characteristics associated with current smoking included age > 50 years compared with 30-39 years [odds ratio (OR) 0.65; 95% confidence interval (CI) 0.51-0.83], HIV exposure through injecting drug use compared with heterosexual exposure (OR 3.03; 95% CI 2.25-4.07), and receiving antiretroviral therapy (ART) at study sites in Singapore, South Korea, Malaysia, Japan and Vietnam in comparison to Thailand (all OR > 2). Women were less likely to smoke than men (OR 0.11; 95% CI 0.08-0.14). In simulated interventions, smoking cessation demonstrated the greatest impact in reducing CVD and CHD risk and closely approximated the impact of switching from abacavir to an alternate antiretroviral in the reduction of 5-year MI risk.
CONCLUSIONS: Multiple interventions could reduce CVD, CHD and MI risk in Asian HIV-positive patients, with smoking cessation potentially being the most influential.
METHODS: Patients testing HBs antigen (Ag) or HCV antibody (Ab) positive within enrollment into TAHOD were considered HBV or HCV co-infected. Factors associated with HBV and/or HCV co-infection were assessed by logistic regression models. Factors associated with post-ART HIV immunological response (CD4 change after six months) and virological response (HIV RNA <400 copies/ml after 12 months) were also determined. Survival was assessed by the Kaplan-Meier method and log rank test.
RESULTS: A total of 7,455 subjects were recruited by December 2012. Of patients tested, 591/5656 (10.4%) were HBsAg positive, 794/5215 (15.2%) were HCVAb positive, and 88/4966 (1.8%) were positive for both markers. In multivariate analysis, HCV co-infection, age, route of HIV infection, baseline CD4 count, baseline HIV RNA, and HIV-1 subtype were associated with immunological recovery. Age, route of HIV infection, baseline CD4 count, baseline HIV RNA, ART regimen, prior ART and HIV-1 subtype, but not HBV or HCV co-infection, affected HIV RNA suppression. Risk factors affecting mortality included HCV co-infection, age, CDC stage, baseline CD4 count, baseline HIV RNA and prior mono/dual ART. Shortest survival was seen in subjects who were both HBV- and HCV-positive.
CONCLUSION: In this Asian cohort of HIV-infected patients, HCV co-infection, but not HBV co-infection, was associated with lower CD4 cell recovery after ART and increased mortality.
METHODS: In a regional HIV observational cohort in the Asia-Pacific region, patients with viral suppression (2 consecutive viral loads <400 copies/mL) and a CD4 count ≥200 cells per microliter who had CD4 testing 6 monthly were analyzed. Main study end points were occurrence of 1 CD4 count <200 cells per microliter (single CD4 <200) and 2 CD4 counts <200 cells per microliter within a 6-month period (confirmed CD4 <200). A comparison of time with single and confirmed CD4 <200 with biannual or annual CD4 assessment was performed by generating a hypothetical group comprising the same patients with annual CD4 testing by removing every second CD4 count.
RESULTS: Among 1538 patients, the rate of single CD4 <200 was 3.45/100 patient-years and of confirmed CD4 <200 was 0.77/100 patient-years. During 5 years of viral suppression, patients with baseline CD4 200-249 cells per microliter were significantly more likely to experience confirmed CD4 <200 compared with patients with higher baseline CD4 [hazard ratio, 55.47 (95% confidence interval: 7.36 to 418.20), P < 0.001 versus baseline CD4 ≥500 cells/μL]. Cumulative probabilities of confirmed CD4 <200 was also higher in patients with baseline CD4 200-249 cells per microliter compared with patients with higher baseline CD4. There was no significant difference in time to confirmed CD4 <200 between biannual and annual CD4 measurement (P = 0.336).
CONCLUSIONS: Annual CD4 monitoring in virally suppressed HIV patients with a baseline CD4 ≥250 cells per microliter may be sufficient for clinical management.
METHODS: Patients initiating cART between 2006 and 2013 were included. TI was defined as stopping cART for >1 day. Treatment failure was defined as confirmed virological, immunological or clinical failure. Time to treatment failure during cART was analysed using Cox regression, not including periods off treatment. Covariables with P < 0.10 in univariable analyses were included in multivariable analyses, where P < 0.05 was considered statistically significant.
RESULTS: Of 4549 patients from 13 countries in Asia, 3176 (69.8%) were male and the median age was 34 years. A total of 111 (2.4%) had TIs due to AEs and 135 (3.0%) had TIs for other reasons. Median interruption times were 22 days for AE and 148 days for non-AE TIs. In multivariable analyses, interruptions >30 days were associated with failure (31-180 days HR = 2.66, 95%CI (1.70-4.16); 181-365 days HR = 6.22, 95%CI (3.26-11.86); and >365 days HR = 9.10, 95% CI (4.27-19.38), all P < 0.001, compared to 0-14 days). Reasons for previous TI were not statistically significant (P = 0.158).
CONCLUSIONS: Duration of interruptions of more than 30 days was the key factor associated with large increases in subsequent risk of treatment failure. If TI is unavoidable, its duration should be minimised to reduce the risk of failure after treatment resumption.
METHODS: HIV-infected adults enrolled in the TREAT Asia HIV Observational Database were eligible if they had an HIV RNA measurement documented at the time of ART initiation. The dataset was randomly split into a derivation data set (75% of patients) and a validation data set (25%). Factors associated with pre-treatment HIV RNA <100,000 copies/mL were evaluated by logistic regression adjusted for study site. A prediction model and prediction scores were created.
RESULTS: A total of 2592 patients were enrolled for the analysis. Median [interquartile range (IQR)] age was 35.8 (29.9-42.5) years; CD4 count was 147 (50-248) cells/mm3; and pre-treatment HIV RNA was 100,000 (34,045-301,075) copies/mL. Factors associated with pre-treatment HIV RNA <100,000 copies/mL were age <30 years [OR 1.40 vs. 41-50 years; 95% confidence interval (CI) 1.10-1.80, p = 0.01], body mass index >30 kg/m2(OR 2.4 vs. <18.5 kg/m2; 95% CI 1.1-5.1, p = 0.02), anemia (OR 1.70; 95% CI 1.40-2.10, p 350 cells/mm3(OR 3.9 vs. <100 cells/mm3; 95% CI 2.0-4.1, p 2000 cells/mm3(OR 1.7 vs. <1000 cells/mm3; 95% CI 1.3-2.3, p 25 yielded the sensitivity of 46.7%, specificity of 79.1%, positive predictive value of 67.7%, and negative predictive value of 61.2% for prediction of pre-treatment HIV RNA <100,000 copies/mL among derivation patients.
CONCLUSION: A model prediction for pre-treatment HIV RNA <100,000 copies/mL produced an area under the ROC curve of 0.70. A larger sample size for prediction model development as well as for model validation is warranted.