Methods: To address this, we applied high-throughput next-generation sequencing to profile the venom gland cDNA libraries of C. bivirgata flaviceps. The transcriptome was de novo assembled, followed by gene annotation, multiple sequence alignment and analyses of the transcripts.
Results: A total of 74 non-redundant toxin-encoding genes from 16 protein families were identified, with 31 full-length toxin transcripts. Three-finger toxins (3FTx), primarily delta-neurotoxins and cardiotoxin-like/cytotoxin-like proteins, were the most diverse and abundantly expressed. The major 3FTx (Cb_FTX01 and Cb_FTX02) are highly similar to calliotoxin, a delta-neurotoxin previously reported in the venom of C. bivirgata. This study also revealed a conserved tyrosine residue at position 4 of the cardiotoxin-like/cytotoxin-like protein genes in the species. These variants, proposed as Y-type CTX-like proteins, are similar to the H-type CTX from cobras. The substitution is conservative though, preserving a less toxic form of elapid CTX-like protein, as indicated by the lack of venom cytotoxicity in previous laboratory and clinical findings. The ecological role of these toxins, however, remains unclear. The study also uncovered unique transcripts that belong to phospholipase A2 of Groups IA and IB, and snake venom metalloproteinases of PIII subclass, which show sequence variations from those of Asiatic elapids.
Conclusion: The venom gland transcriptome of C. bivirgata flaviceps from Malaysia was de novo assembled and annotated. The diversity and expression profile of toxin genes provide insights into the biological and medical importance of the species.
METHODS: This study examined the immunological binding and neutralization capacity of PCAV against the two cobra venoms using WHO-recommended protocols.
RESULTS: In mice, both venoms were highly neurotoxic and lethal with a median lethal dose of 0.18 and 0.20 µg/g, respectively. PCAV exhibited strong and comparable immunoreactivity toward the venoms, indicating conserved venom antigenicity between the two allopatric species. In in vivo assay, PCAV was only moderately effective in neutralizing the toxicity of both venoms. Its potency was even lower against the hetero-specific N. samarensis venom by approximately two-fold compared with its potency against N. philippinensis venom.
CONCLUSION: The results indicated that PCAV could be used to treat N. samarensis envenomation but at a higher dose, which might increase the risk of hypersensitivity and worsen the shortage of antivenom supply in the field. Antivenom manufacturing should be improved by developing a low-dose, high-efficacy product against cobra envenomation.
METHODS: The 50% inhibitory concentration (IC50) of PTZ and TFP in SW1116, SW480, HCT-15, and COLO205 colon cancer cell lines are measured using MTT. Western blot and immunocytochemistry were used to determine the expression of PCNA, cyclin D1 (CD1), and POPDC proteins. Cell migration was observed using a scratch wound-healing assay.
RESULTS: Treatment with PTZ and TFP inhibited colon cancer cells growth in a dose-dependent manner. PTZ and TFP significantly inhibited the activation of proliferation markers, PCNA and CD1, and the migration of colon cancer cells. Furthermore, POPDC protein was significantly suppressed in all cell types of colon cancer, particularly in SW480. Finally, the CaM antagonist upregulates the POPDC1 expression in colon cancer cells.
CONCLUSION: These findings suggest that CaM antagonists suppress colon cancer cells proliferation via downregulation of CD1 and PCNA. In addition, POPDC protein could be used as a biomarker in colon cancer, and CaM antagonist could be used to regulate POPDC1 expression. This study suggests that targeting POPDC1 with CaM inhibition could be a potential therapeutic strategy for colon cancer treatment.
.
METHODS: This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS).
RESULTS: SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions.
CONCLUSIONS: Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.