Displaying all 4 publications

Abstract:
Sort:
  1. Chong W, Hijazi M, Abdalrazig M, Patil N
    J Emerg Med, 2020 Jul;59(1):e27-e29.
    PMID: 32439254 DOI: 10.1016/j.jemermed.2020.04.015
  2. Raman K, Govindaraju R, James K, Abu Bakar MZ, Patil N, Shah MN
    J Laryngol Otol, 2023 Feb;137(2):169-173.
    PMID: 34924062 DOI: 10.1017/S0022215121004175
    OBJECTIVE: Knowledge of anatomical variations of the frontal recess and frontal sinus and recognition of endoscopic landmarks are vital for safe and effective endoscopic sinus surgery. This study revisited an anatomical landmark in the frontal recess that could serve as a guide to the frontal sinus.

    METHOD: Prevalence of the anterior ethmoid genu, its morphology and its relationship with the frontal sinus drainage pathway was assessed. Computed tomography scans with multiplanar reconstruction were used to study non-diseased sinonasal complexes.

    RESULTS: The anterior ethmoidal genu was present in all 102 anatomical sides studied, independent of age, gender and race. Its position was within the frontal sinus drainage pathway, and the drainage pathway was medial to it in 98 of 102 cases. The anterior ethmoidal genu sometimes extended laterally and formed a recess bounded by the lamina papyracea laterally, by the uncinate process anteriorly and by the bulla ethmoidalis posteriorly. Distance of the anterior ethmoidal genu to frontal ostia can be determined by the height of the posterior wall of the agger nasi cell rather than its volume or other dimensions.

    CONCLUSION: This study confirmed that the anterior ethmoidal genu is a constant anatomical structure positioned within frontal sinus drainage pathway. The description of anterior ethmoidal genu found in this study explained the anatomical connection between the agger nasi cell, uncinate process and bulla ethmoidalis and its structural organisation.

  3. Patil N, Dhariwal R, Mohammed A, Wei LS, Jain M
    Heliyon, 2024 Apr 30;10(8):e28852.
    PMID: 38644825 DOI: 10.1016/j.heliyon.2024.e28852
    Alzheimer's disease (AD) is increasingly becoming a major public health concern in our society. While many studies have explored the use of natural polyketides, alkaloids, and other chemical components in AD treatment, there is an urgent need to clarify the concept of multi-target treatment for AD. This study focuses on using network pharmacology approach to elucidate how secondary metabolites from Dictyostelium discoideum affect AD through multi-target or indirect mechanisms. The secondary metabolites produced by D. discoideum during their development were obtained from literature sources and PubChem. Disease targets were selected using GeneCards, DisGeNET, and CTD databases, while compound-based targets were identified through Swiss target prediction and Venn diagrams were used to find intersections between these targets. A network depicting the interplay among disease, drugs, active ingredients, and key target proteins (PPI network) was formed utilizing the STRING (Protein-Protein Interaction Networks Functional Enrichment Analysis) database. To anticipate the function and mechanism of the screened compounds, GO and KEGG enrichment analyses were conducted and visually presented using graphs and bubble charts. After the screening phase, the top interacting targets in the PPI network and the compound with the most active target were chosen for subsequent molecular docking and molecular dynamic simulation studies. This study identified nearly 50 potential targeting genes for each of the screened compounds and revealed multiple signaling pathways. Among these pathways, the inflammatory pathway stood out. COX-2, a receptor associated with neuroinflammation, showed differential expression in various stages of AD, particularly in pyramidal neurons during the early stages of the disease. This increase in COX-2 expression is likely induce by higher levels of IL-1, which is associated with neuritic plaques and microglial cells in AD. Molecular docking investigations demonstrated a strong binding interaction between the terpene compound PQA-11 and the neuroinflammatory receptor COX2, with a substantial binding affinity of -8.4 kcal/mol. Subsequently, a thorough analysis of the docked complex (COX2-PQA11) through Molecular Dynamics Simulation showed lower RMSD, minimal RMSF fluctuations, and a reduced total energy of -291.35 kJ/mol compared to the standard drug. These findings suggest that the therapeutic effect of PQA-11 operates through the inflammatory pathway, laying the groundwork for further in-depth research into the role of secondary metabolites in AD treatment.
  4. Gopinath SCB, Ramanathan S, More M, Patil K, Patil SJ, Patil N, et al.
    Curr Med Chem, 2024;31(12):1464-1484.
    PMID: 37702170 DOI: 10.2174/0929867331666230912101634
    The engineering of nanoscale materials has broadened the scope of nanotechnology in a restricted functional system. Today, significant priority is given to immediate health diagnosis and monitoring tools for point-of-care testing and patient care. Graphene, as a one-atom carbon compound, has the potential to detect cancer biomarkers and its derivatives. The atom-wide graphene layer specialises in physicochemical characteristics, such as improved electrical and thermal conductivity, optical transparency, and increased chemical and mechanical strength, thus making it the best material for cancer biomarker detection. The outstanding mechanical, electrical, electrochemical, and optical properties of two-dimensional graphene can fulfil the scientific goal of any biosensor development, which is to develop a more compact and portable point-of-care device for quick and early cancer diagnosis. The bio-functionalisation of recognised biomarkers can be improved by oxygenated graphene layers and their composites. The significance of graphene that gleans its missing data for its high expertise to be evaluated, including the variety in surface modification and analytical reports. This review provides critical insights into graphene to inspire research that would address the current and remaining hurdles in cancer diagnosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links