Displaying all 13 publications

Abstract:
Sort:
  1. Patikorn C, Saidoung P, Pham T, Phisalprapa P, Lee YY, Varady KA, et al.
    BMC Med, 2023 May 25;21(1):196.
    PMID: 37231411 DOI: 10.1186/s12916-023-02874-y
    BACKGROUND: Systematic reviews and meta-analyses of randomized clinical trials (RCTs) have reported the benefits of ketogenic diets (KD) in various participants such as patients with epilepsy and adults with overweight or obesity. Nevertheless, there has been little synthesis of the strength and quality of this evidence in aggregate.

    METHODS: To grade the evidence from published meta-analyses of RCTs that assessed the association of KD, ketogenic low-carbohydrate high-fat diet (K-LCHF), and very low-calorie KD (VLCKD) with health outcomes, PubMed, EMBASE, Epistemonikos, and Cochrane database of systematic reviews were searched up to February 15, 2023. Meta-analyses of RCTs of KD were included. Meta-analyses were re-performed using a random-effects model. The quality of evidence per association provided in meta-analyses was rated by the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) criteria as high, moderate, low, and very low.

    RESULTS: We included 17 meta-analyses comprising 68 RCTs (median [interquartile range, IQR] sample size of 42 [20-104] participants and follow-up period of 13 [8-36] weeks) and 115 unique associations. There were 51 statistically significant associations (44%) of which four associations were supported by high-quality evidence (reduced triglyceride (n = 2), seizure frequency (n = 1) and increased low-density lipoprotein cholesterol (LDL-C) (n = 1)) and four associations supported by moderate-quality evidence (decrease in body weight, respiratory exchange ratio (RER), hemoglobin A1c, and increased total cholesterol). The remaining associations were supported by very low (26 associations) to low (17 associations) quality evidence. In overweight or obese adults, VLCKD was significantly associated with improvement in anthropometric and cardiometabolic outcomes without worsening muscle mass, LDL-C, and total cholesterol. K-LCHF was associated with reduced body weight and body fat percentage, but also reduced muscle mass in healthy participants.

    CONCLUSIONS: This umbrella review found beneficial associations of KD supported by moderate to high-quality evidence on seizure and several cardiometabolic parameters. However, KD was associated with a clinically meaningful increase in LDL-C. Clinical trials with long-term follow-up are warranted to investigate whether the short-term effects of KD will translate to beneficial effects on clinical outcomes such as cardiovascular events and mortality.

  2. Patikorn C, Roubal K, Veettil SK, Chandran V, Pham T, Lee YY, et al.
    JAMA Netw Open, 2021 12 01;4(12):e2139558.
    PMID: 34919135 DOI: 10.1001/jamanetworkopen.2021.39558
    Importance: Several meta-analyses of randomized clinical trials (RCTs) have demonstrated the many health benefits of intermittent fasting (IF). However, there has been little synthesis of the strength and quality of this evidence in aggregate to date.

    Objective: To grade the evidence from published meta-analyses of RCTs that assessed the associations of IF (zero-calorie alternate-day fasting, modified alternate-day fasting, the 5:2 diet, and time-restricted eating) with obesity-related health outcomes.

    Evidence Review: PubMed, Embase, and Cochrane database of systematic reviews were searched from database inception to January 12, 2021. Data analysis was conducted from April 2021 through July 2021. Meta-analyses of RCTs investigating effects of IF in adults were included. The effect sizes of IF were recalculated using a random-effects model. We assessed the quality of evidence per association by applying the GRADE criteria (Grading of Recommendations, Assessment, Development, and Evaluations) as high, moderate, low, and very low.

    Findings: A total of 11 meta-analyses comprising 130 RCTs (median [IQR] sample size, 38 [24-69] participants; median [IQR] follow-up period, 3 [2-5] months) were included describing 104 unique associations of different types of IF with obesity-related health outcomes (median [IQR] studies per association, 4 [3-5]). There were 28 statistically significant associations (27%) that demonstrated the beneficial outcomes for body mass index, body weight, fat mass, low-density lipoprotein cholesterol, total cholesterol, triglycerides, fasting plasma glucose, fasting insulin, homeostatic model assessment of insulin resistance, and blood pressure. IF was found to be associated with reduced fat-free mass. One significant association (1%) supported by high-quality evidence was modified alternate-day fasting for 1 to 2 months, which was associated with moderate reduction in body mass index in healthy adults and adults with overweight, obesity, or nonalcoholic fatty liver disease compared with regular diet. Six associations (6%) were supported by moderate quality evidence. The remaining associations found to be significant were supported by very low (75 associations [72%]) to low (22 associations [21%]) quality evidence.

    Conclusions and Relevance: In this umbrella review, we found beneficial associations of IF with anthropometric and cardiometabolic outcomes supported by moderate to high quality of evidence, which supports the role of IF, especially modified alternate-day fasting, as a weight loss approach for adults with overweight or obesity. More clinical trials with long-term follow-up are needed to investigate the effects of IF on clinical outcomes such as cardiovascular events and mortality.

  3. Do TC, Boettiger D, Law M, Pujari S, Zhang F, Chaiwarith R, et al.
    HIV Med, 2016 08;17(7):542-9.
    PMID: 27430354 DOI: 10.1111/hiv.12358
    OBJECTIVES: The aim of the study was to assess the prevalence and characteristics associated with current smoking in an Asian HIV-positive cohort, to calculate the predictive risks of cardiovascular disease (CVD), coronary heart disease (CHD) and myocardial infarction (MI), and to identify the impact that simulated interventions may have.

    METHODS: Logistic regression analysis was used to distinguish associated current smoking characteristics. Five-year predictive risks of CVD, CHD and MI and the impact of simulated interventions were calculated utilizing the Data Collection on Adverse Effects of Anti-HIV Drugs Study (D:A:D) algorithm.

    RESULTS: Smoking status data were collected from 4274 participants and 1496 of these had sufficient data for simulated intervention calculations. Current smoking prevalence in these two groups was similar (23.2% vs. 19.9%, respectively). Characteristics associated with current smoking included age > 50 years compared with 30-39 years [odds ratio (OR) 0.65; 95% confidence interval (CI) 0.51-0.83], HIV exposure through injecting drug use compared with heterosexual exposure (OR 3.03; 95% CI 2.25-4.07), and receiving antiretroviral therapy (ART) at study sites in Singapore, South Korea, Malaysia, Japan and Vietnam in comparison to Thailand (all OR > 2). Women were less likely to smoke than men (OR 0.11; 95% CI 0.08-0.14). In simulated interventions, smoking cessation demonstrated the greatest impact in reducing CVD and CHD risk and closely approximated the impact of switching from abacavir to an alternate antiretroviral in the reduction of 5-year MI risk.

    CONCLUSIONS: Multiple interventions could reduce CVD, CHD and MI risk in Asian HIV-positive patients, with smoking cessation potentially being the most influential.

  4. Sukeepaisarnjaroen W, Pham T, Tanwandee T, Nazareth S, Galhenage S, Mollison L, et al.
    World J Gastroenterol, 2015 Jul 28;21(28):8660-9.
    PMID: 26229408 DOI: 10.3748/wjg.v21.i28.8660
    To examined the efficacy and safety of treatment with boceprevir, PEGylated-interferon and ribavirin (PR) in hepatitis C virus genotype 1 (HCVGT1) PR treatment-failures in Asia.
  5. Nguyen TA, Pham T, Vu HTT, Nguyen TX, Vu TT, Nguyen BTT, et al.
    Am J Alzheimers Dis Other Demen, 2018 Nov;33(7):423-432.
    PMID: 29642720 DOI: 10.1177/1533317518768999
    This study examined the use of potentially inappropriate medicines that may affect cognition (PIMcog) in people with dementia and its associated factors. Medical records of all outpatients with dementia attending a tertiary hospital in Vietnam between January 1, 2015, and December 31, 2016, were examined. Medicine use was assessed against a list of PIMcog. Variables associated with having a PIMcog were assessed using a multiple logistic regression. Of the 128 patients, 41% used a PIMcog, 39.1% used cholinesterase inhibitors (CEIs) concomitantly with anticholinergics, and 18% used antipsychotics. The number of hospital visits (adjusted odds ratio [OR]: 1.08; 95% confidence interval [CI]: 1.02-1.16) and number of treating specialists (adjusted OR: 0.61; 95% CI: 0.45-0.83) were associated with PIMcog use. This study highlights a high-level use of medicines that can further impair cognition or reduce the effectiveness of CEIs in people with dementia. Efforts to improve quality use of medicines for this population are warranted.
  6. de Prost N, Audureau E, Guillon A, Handala L, Préau S, Guigon A, et al.
    Ann Intensive Care, 2024 Jun 28;14(1):101.
    PMID: 38940865 DOI: 10.1186/s13613-024-01319-w
    BACKGROUND: A notable increase in severe cases of COVID-19, with significant hospitalizations due to the emergence and spread of JN.1 was observed worldwide in late 2023 and early 2024. However, no clinical data are available regarding critically-ill JN.1 COVID-19 infected patients.

    METHODS: The current study is a substudy of the SEVARVIR prospective multicenter observational cohort study. Patients admitted to any of the 40 participating ICUs between November 17, 2022, and January 22, 2024, were eligible for inclusion in the SEVARVIR cohort study (NCT05162508) if they met the following inclusion criteria: age ≥ 18 years, SARS-CoV-2 infection confirmed by a positive reverse transcriptase-polymerase chain reaction (RT-PCR) in nasopharyngeal swab samples, ICU admission for acute respiratory failure. The primary clinical endpoint of the study was day-28 mortality. Evaluation of the association between day-28 mortality and sublineage group was conducted by performing an exploratory multivariable logistic regression model, after systematically adjusting for predefined prognostic factors previously shown to be important confounders (i.e. obesity, immunosuppression, age and SOFA score) computing odds ratios (OR) along with their corresponding 95% confidence intervals (95% CI).

    RESULTS: During the study period (November 2022-January 2024) 56 JN.1- and 126 XBB-infected patients were prospectively enrolled in 40 French intensive care units. JN.1-infected patients were more likely to be obese (35.7% vs 20.8%; p = 0.033) and less frequently immunosuppressed than others (20.4% vs 41.4%; p = 0.010). JN.1-infected patients required invasive mechanical ventilation support in 29.1%, 87.5% of them received dexamethasone, 14.5% tocilizumab and none received monoclonal antibodies. Only one JN-1 infected patient (1.8%) required extracorporeal membrane oxygenation support during ICU stay (vs 0/126 in the XBB group; p = 0.30). Day-28 mortality of JN.1-infected patients was 14.6%, not significantly different from that of XBB-infected patients (22.0%; p = 0.28). In univariable logistic regression analysis and in multivariable analysis adjusting for confounders defined a priori, we found no statistically significant association between JN.1 infection and day-28 mortality (adjusted OR 1.06 95% CI (0.17;1.42); p = 0.19). There was no significant between group difference regarding duration of stay in the ICU (6.0 [3.5;11.0] vs 7.0 [4.0;14.0] days; p = 0.21).

    CONCLUSIONS: Critically-ill patients with Omicron JN.1 infection showed a different clinical phenotype than patients infected with the earlier XBB sublineage, including more frequent obesity and less immunosuppression. Compared with XBB, JN.1 infection was not associated with higher day-28 mortality.

  7. Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, et al.
    Persoonia, 2019;43:223-425.
    PMID: 32214501 DOI: 10.3767/persoonia.2019.43.06
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
  8. Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Gené J, Guarro J, et al.
    Persoonia, 2018 Dec;40:240-393.
    PMID: 30505003 DOI: 10.3767/persoonia.2018.40.10
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta × C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoë banksiigena on Banksia marginata, Elsinoë elaeocarpi on Elaeocarpus sp., Elsinoë leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudoinconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis × urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand , Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided.
  9. Crous PW, Luangsa-Ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, et al.
    Persoonia, 2018 Dec;41:238-417.
    PMID: 30728607 DOI: 10.3767/persoonia.2018.41.12
    Novel species of fungi described in this study include those from various countries as follows: Angola, Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia, Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora, Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil, Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica, Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum, Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis, Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata, Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus, Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain), Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands, Xylodon jacobaeus on Eucalyptus camaldulensis. Chile, Colletotrichum arboricola on Fuchsia magellanica. Costa Rica, Lasiosphaeria miniovina on tree branch. Ecuador, Ganoderma chocoense on tree trunk. France, Neofitzroyomyces nerii (incl. Neofitzroyomyces gen. nov.) on Nerium oleander. Ghana, Castanediella tereticornis on Eucalyptus tereticornis, Falcocladium africanum on Eucalyptus brassiana, Rachicladosporium corymbiae on Corymbia citriodora. Hungary, Entoloma silvae-frondosae in Carpinus betulus-Pinus sylvestris mixed forest. Iran, Pseudopyricularia persiana on Cyperus sp. Italy, Inocybe roseascens on soil in mixed forest. Laos, Ophiocordyceps houaynhangensis on Coleoptera larva. Malaysia, Monilochaetes melastomae on Melastoma sp. Mexico, Absidia terrestris from soil. Netherlands, Acaulium pannemaniae, Conioscypha boutwelliae, Fusicolla septimanifiniscientiae, Gibellulopsis simonii, Lasionectria hilhorstii, Lectera nordwiniana, Leptodiscella rintelii, Parasarocladium debruynii and Sarocladium dejongiae (incl. Sarocladiaceae fam. nov.) from soil. New Zealand, Gnomoniopsis rosae on Rosa sp. and Neodevriesia metrosideri on Metrosideros sp. Puerto Rico, Neodevriesia coccolobae on Coccoloba uvifera, Neodevriesia tabebuiae and Alfaria tabebuiae on Tabebuia chrysantha. Russia, Amanita paludosa on bogged soil in mixed deciduous forest, Entoloma tiliae in forest of Tilia × europaea, Kwoniella endophytica on Pyrus communis. South Africa, Coniella diospyri on Diospyros mespiliformis, Neomelanconiella combreti (incl. Neomelanconiellaceae fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialoseptoria natalensis on unidentified plant host, Pseudorobillarda bolusanthi on Bolusanthus speciosus, Thelonectria pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauracearum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopenidiella gallaica on leaf litter. Thailand, Corynespora thailandica on wood, Lareunionomyces loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolaena odorata, Neomyrmecridium septatum (incl. Neomyrmecridium gen. nov.), Pararamichloridium caricicola on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariaceae fam. nov. and Xenodactylaria gen. nov.), Neomyrmecridium asiaticum and Cymostachys thailandica from unidentified vine. USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortuitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaceae fam. nov.) from twig and cone litter, Pythium wohlseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air. Vietnam, Fistulinella olivaceoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.
  10. Nogueira RG, Qureshi MM, Abdalkader M, Martins SO, Yamagami H, Qiu Z, et al.
    Neurology, 2021 Jun 08;96(23):e2824-e2838.
    PMID: 33766997 DOI: 10.1212/WNL.0000000000011885
    OBJECTIVE: To measure the global impact of COVID-19 pandemic on volumes of IV thrombolysis (IVT), IVT transfers, and stroke hospitalizations over 4 months at the height of the pandemic (March 1 to June 30, 2020) compared with 2 control 4-month periods.

    METHODS: We conducted a cross-sectional, observational, retrospective study across 6 continents, 70 countries, and 457 stroke centers. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.

    RESULTS: There were 91,373 stroke admissions in the 4 months immediately before compared to 80,894 admissions during the pandemic months, representing an 11.5% (95% confidence interval [CI] -11.7 to -11.3, p < 0.0001) decline. There were 13,334 IVT therapies in the 4 months preceding compared to 11,570 procedures during the pandemic, representing a 13.2% (95% CI -13.8 to -12.7, p < 0.0001) drop. Interfacility IVT transfers decreased from 1,337 to 1,178, or an 11.9% decrease (95% CI -13.7 to -10.3, p = 0.001). Recovery of stroke hospitalization volume (9.5%, 95% CI 9.2-9.8, p < 0.0001) was noted over the 2 later (May, June) vs the 2 earlier (March, April) pandemic months. There was a 1.48% stroke rate across 119,967 COVID-19 hospitalizations. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was noted in 3.3% (1,722/52,026) of all stroke admissions.

    CONCLUSIONS: The COVID-19 pandemic was associated with a global decline in the volume of stroke hospitalizations, IVT, and interfacility IVT transfers. Primary stroke centers and centers with higher COVID-19 inpatient volumes experienced steeper declines. Recovery of stroke hospitalization was noted in the later pandemic months.

  11. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  12. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jun 28;132(26):261902.
    PMID: 38996325 DOI: 10.1103/PhysRevLett.132.261902
    A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20  fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst)  GeV, with a total uncertainty of 0.33 GeV.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links