Displaying all 3 publications

Abstract:
Sort:
  1. Qasem MA, Noordin MI, Arya A, Alsalahi A, Jayash SN
    PeerJ, 2018;6:e4788.
    PMID: 29844959 DOI: 10.7717/peerj.4788
    Background: Ceratonia siliqua pods (carob) have been nominated to control the high blood glucose of diabetics. In Yemen, however, its antihyperglycemic activity has not been yet assessed. Thus, this study evaluated the in vitro inhibitory effect of the methanolic extract of carob pods against α-amylase and α-glucosidase and the in vivo glycemic effect of such extract in streptozotocin-nicotinamide induced diabetic rats.

    Methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric reducing antioxidant power assay (FRAP) were applied to evaluate the antioxidant activity of carob. In vitro cytotoxicity of carob was conducted on human hepatocytes (WRL68) and rat pancreatic β-cells (RIN-5F). Acute oral toxicity of carob was conducted on a total of 18 male and 18 female Sprague-Dawley (SD) rats, which were subdivided into three groups (n = 6), namely: high and low dose carob-treated (CS5000 and CS2000, respectively) as well as the normal control (NC) receiving a single oral dose of 5,000 mg kg-1 carob, 2,000 mg kg-1 carob and 5 mL kg-1 distilled water for 14 days, respectively. Alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, total bilirubin, creatinine and urea were assessed. Livers and kidneys were harvested for histopathology. In vitro inhibitory effect against α-amylase and α-glucosidase was evaluated. In vivo glycemic activity was conducted on 24 male SD rats which were previously intraperitoneally injected with 55 mg kg-1 streptozotocin (STZ) followed by 210 mg kg-1nicotinamide to induce type 2 diabetes mellitus. An extra non-injected group (n = 6) was added as a normal control (NC). The injected-rats were divided into four groups (n = 6), namely: diabetic control (D0), 5 mg kg-1glibenclamide-treated diabetic (GD), 500 mg kg-1 carob-treated diabetic (CS500) and 1,000 mg kg-1 carob-treated diabetic (CS1000). All groups received a single oral daily dose of their treatment for 4 weeks. Body weight, fasting blood glucose (FBG), oral glucose tolerance test, biochemistry, insulin and hemostatic model assessment were assessed. Pancreases was harvested for histopathology.

    Results: Carob demonstrated a FRAP value of 3191.67 ± 54.34 µmoL Fe++ and IC50 of DPPH of 11.23 ± 0.47 µg mL-1. In vitro, carob was non-toxic on hepatocytes and pancreatic β-cells. In acute oral toxicity, liver and kidney functions and their histological sections showed no abnormalities. Carob exerted an in vitro inhibitory effect against α-amylase and α-glucosidase with IC50 of 92.99 ± 0.22 and 97.13 ± 4.11 µg mL-1, respectively. In diabetic induced rats, FBG of CS1000 was significantly less than diabetic control. Histological pancreatic sections of CS1000 showed less destruction of β-cells than CS500 and diabetic control.

    Conclusion: Carob pod did not cause acute systemic toxicity and showed in vitro antioxidant effects. On the other hand, inhibiting α-amylase and α-glucosidase was evident. Interestingly, a high dose of carob exhibits an in vivo antihyperglycemic activity and warrants further in-depth study to identify the potential carob extract composition.

  2. Aljaberi MA, Alareqe NA, Alsalahi A, Qasem MA, Noman S, Uzir MUH, et al.
    PLoS One, 2022;17(11):e0277368.
    PMID: 36350838 DOI: 10.1371/journal.pone.0277368
    Although the psychological impact of coronavirus disease 2019 (COVID-19) has been evaluated in the literature, further research is needed, particularly on post-traumatic stress disorder (PTSD) and psychological outcomes, is needed. This study aims to investigate the effect of the COVID-19 pandemic on psychological outcomes (depression, anxiety, and insomnia). A cross-sectional study using an online survey was conducted using the following instruments: Impact of Event Scale-Revised (IES-R), Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder (GAD-7), and Insomnia Severity Index (ISI). Confirmatory factor analysis (CFA), structural equation model (SEM), multiple indicators and multiple causes (MIMIC) modeling, and differential item functioning (DIF) were performed to analyze the collected data. According to the results, participants with PTSD (n = 360) showed a higher level of depression, anxiety, and insomnia than those without PTSD (n = 639). Among the participants, 36.5% experienced moderate to severe symptoms of depression, and 32.6% had mild depressive symptoms. Moreover, 23.7% of participants experienced moderate to severe anxiety symptoms, and 33.1% had mild anxiety symptoms. In addition, 51.5% of participants experienced symptoms of insomnia. In conclusion, the PTSD caused by COVID-19 is significantly associated with depression, anxiety, and insomnia at the level of latent constructs and observed variables.
  3. Alsalahi A, Maarof NNN, Alshawsh MA, Aljaberi MA, Qasem MA, Mahuob A, et al.
    Heliyon, 2024 Mar 30;10(6):e27390.
    PMID: 38510007 DOI: 10.1016/j.heliyon.2024.e27390
    The immune-modulatory effects of black seeds (Nigella sativa seeds, NSS) are well documented, but the overall in vivo impact of this important natural medicinal product on immune system function has yet to be established. Here we systematically reviewed and meta-analyzed the effects of NSS on humoral [serum titers of immunoglobulins including IgG, IgM, anti-Newcastle virus disease (anti-NDV), and sheep red blood cell antigen (anti-SRBC)] and cellular immunity [total white blood cell (WBC) count and percentages of monocytes, lymphocytes, basophils, neutrophils, and eosinophils] in healthy animals. The PubMed, ScienceDirect, Web of Science, and Scopus databases were searched according to predefined eligibility criteria. Meta-analyses were performed to estimate the final effect size using RevMan software. Seventeen animal studies were eligible for analysis. For humoral immunity, the overall pooled effect size (ES) of NSS on serum titers of IgM and anti-NVD antibodies was not significantly different [mean difference (MD) 75.27, 95% CI: -44.76 to 195.30, p = 0.22 (I2 = 89%, p = 0.003), and -0.01, 95% CI: -0.27 to 0.25, p = 0.94 (I2 = 74%, p = 0.02), respectively]. However, NSS significantly increased serum titers of IgG and anti-SRBC antibodies [MD 3.30, 95% CI: 2.27 to 4.32, p = 0.00001 (I2 = 0%, p = 0.97), and 1.15, 95% CI: 0.74 to 1.56, p = 0.00001 (I2 = 0%, p = 0.43), respectively]. For cellular immunity, the ES of NSS on WBCs, monocytes, and lymphocytes were not significantly different [MD 0.29, 95% CI: -0.55 to 1.13, p = 0.50, (I2 = 14%, p = 0.32), - 0.01, 95% CI: -0.45 to 0.44, p = 0.97 (I2 = 0%, p = 0.77), and 4.73, 95% CI: -7.13 to 16.59, p = 0.43, (I2 = 99%, p = 0.00001), respectively]. In conclusion, black seeds enhance humoral immunity in healthy animals but do not affect cellular immunity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links