Displaying all 4 publications

Abstract:
Sort:
  1. Qureshi MS, Mohd Yusoff AR, Shah A, Nafady A, Sirajuddin
    Talanta, 2015 Jan;132:541-7.
    PMID: 25476342 DOI: 10.1016/j.talanta.2014.10.005
    Vanadium(IV) and vanadium(V) can be determined by using differential pulse cathodic stripping voltammetry technique (DPCSV). Cupferron (ammonium N-nitrosophenylhydroxylamine) was used as ligand to form complex compounds with vanadium ions in Britton-Robinson buffer (BRB) solution. At concentration lower than 1.0×10(-6) M, both V(IV) and V(V) cupferron complexes showed a single cathodic peak at -0.576 V in BRB of pH 4; thus V(IV) and V(V) ions cannot be differentiated at low concentration. However, the ionic species of vanadium can be differentiated at high concentration in the presence of cupferron. Parameters including pH of BRB solution, initial potential and accumulation potential were optimized. Under the optimized parameters, the limit of detection (LOD) was 0.09 nM, and the peak current was linear in the concentration range 0.01-0.9 µM total vanadium ions. The determination of V(IV) and V(V) ions was carried out at higher concentration in the sample using calibration plot method. At higher concentration range of 10-60 µM V(IV) and V(V) ions were determined with LOD of 1.2 and 1.1 µM, respectively. The developed method was successfully applied to 10,00,000 fold diluted Benfield sample and 0.6227 M total vanadium ions were determined. The determination of V(IV) and V(V) ions were also successfully carried out in artificial sample as well as Benfield sample (dilution factor, 10,000). The concentration of V(IV) and V(V) ions was 22.52 µM and 38.91 µM, respectively, giving total vanadium concentration of 0.6143 M in Benfield sample.
  2. Qureshi MS, Yusoff AR, Wirzal MD, Sirajuddin, Barek J, Afridi HI, et al.
    Crit Rev Anal Chem, 2016;46(2):146-59.
    PMID: 25831046 DOI: 10.1080/10408347.2015.1004157
    Phthalates are endocrine disruptors frequently occurring in the general and industrial environment and in many industrial products. Moreover, they are also suspected of being carcinogenic, teratogenic, and mutagenic, and they show diverse toxicity profiles depending on their structures. The European Union and the United States Environmental Protection Agency (US EPA) have included many phthalates in the list of priority substances with potential endocrine-disrupting action. They are: dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), diethylhexyl phthalate (DEHP), di-iso-nonyl phthalate (DINP), di-iso-decyl phthalate (DIDP), di-n-decyl phthalate (DnDP), and dioctyl phthalate (DOP). There is an ever-increasing demand for new analytical methods suitable for monitoring different phthalates in various environmental, biological, and other matrices. Separation and spectrometric methods are most frequently used. However, modern electroanalytical methods can also play a useful role in this field because of their high sensitivity, reasonable selectivity, easy automation, and miniaturization, and especially low investment and running costs, which makes them suitable for large-scale monitoring. Therefore, this review outlines possibilities and limitations of various analytical methods for determination of endocrine-disruptor phthalate esters in various matrices, including somewhat neglected electroanalytical methods.
  3. Rasool M, Malik A, Qureshi MS, Manan A, Pushparaj PN, Asif M, et al.
    PMID: 24864161 DOI: 10.1155/2014/979730
    Neurodegenerative diseases are characterized by protein aggregates and inflammation as well as oxidative stress in the central nervous system (CNS). Multiple biological processes are linked to neurodegenerative diseases such as depletion or insufficient synthesis of neurotransmitters, oxidative stress, abnormal ubiquitination. Furthermore, damaging of blood brain barrier (BBB) in the CNS also leads to various CNS-related diseases. Even though synthetic drugs are used for the management of Alzheimer's disease, Parkinson's disease, autism, and many other chronic illnesses, they are not without side effects. The attentions of researchers have been inclined towards the phytochemicals, many of which have minimal side effects. Phytochemicals are promising therapeutic agents because many phytochemicals have anti-inflammatory, antioxidative as well as anticholinesterase activities. Various drugs of either synthetic or natural origin applied in the treatment of brain disorders need to cross the BBB before they can be used. This paper covers various researches related to phytochemicals used in the management of neurodegenerative disorders.
  4. Rasool M, Iqbal J, Malik A, Ramzan HS, Qureshi MS, Asif M, et al.
    PMID: 24795768 DOI: 10.1155/2014/641597
    Oxidative stress, lipid peroxidation, and transaminase reactions are some of the mechanisms that can lead to liver dysfunction. A time-dependent study was designed to evaluate the ability of silymarin (SLN) and glycyrrhizin (GLN) in different dosage regimens to lessen oxidative stress in the rats with hepatic injury caused by the hepatotoxin carbon tetrachloride. Wistar male albino rats (n = 60) were randomly assigned to six groups. Group A served as a positive control while groups B, C, D, E, and F received a dose of CCl4 (50% solution of CCl4 in liquid paraffin, 2 mL/kg, intraperitoneally) twice a week to induce hepatic injury. Additionally, the animals received SLN and GLN in different doses for a period of six weeks. CCl4 was found to induce hepatic injury by significantly increasing serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and thiobarbituric acid reactive substances while decreasing total protein and the activities of reduced glutathione, superoxide dismutase, and catalase. Treatment with various doses of SLN and GLN significantly reduced ALT, AST, ALP, and TBARS levels and increased GSH, SOD, and CAT levels. Our findings indicated that SLN and GLN have hepatoprotective effects against oxidative stress of the liver.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links