Empty fruit bunch (EFB) and palm oil mill effluent (POME) are the major wastes generated by the oil palm industry in Malaysia. The practice of EFB and POME digester sludge co-composting has shown positive results, both in mitigating otherwise environmentally damaging waste streams and producing a useful product (compost) from these streams. In this study, the bacterial ecosystems of 12-week-old EFB-POME co-compost and POME biogas sludge from Felda Maokil, Johor were analysed using 16S metagenome sequencing. Over ten phyla were detected, with Chloroflexi being the predominant phylum, representing approximately 53% of compost and 23% of the POME microbiome reads. The main bacterial lineage found in the compost and POME was Anaerolinaceae (Chloroflexi) with 30% and 18% of the total gene fragments, respectively. The significant differences between compost and POME communities were abundances of Syntrophobacter, Sulfuricurvum and Coprococcus. No methanogens were identified due to the bias in general 16S primers to eubacteria. The preponderance of anaerobic species in the compost and high abundance of secondary metabolite fermenting bacteria is due to an extended composting time, with anaerobic collapse of the pile due to the tropical heat. Predictive functional profiles of the metagenomes using 16S rRNA marker genes suggest that the presence of enzymes involved in degradation of polysaccharides such as glucoamylase, endoglucanase and arabinofuranosidase, all of which were strongly active in POME. Eubacterial species associated with cellulytic methanogenesis were present in both samples.
We characterized the draft genome of the potentially beneficial Bacillus tropicus strain UPM-CREST01, which was isolated from the bulk soil at a paddy cultivation area in Kampung Gajah, Perak, Malaysia. The final draft assembly of 5,252,705 bp, with a G+C content of 35.23%, was found to harbor 5,368 coding sequences, including several plant-growth-promoting genes.
We characterized the complete genome of the lytic Enterococcus faecalis phage EFKL, which was isolated from a sewage treatment plant in Kuala Lumpur, Malaysia. The phage, which was classified in the genus Saphexavirus, has a 58,343-bp double-stranded DNA genome containing 97 protein-encoding genes and shares 80.60% nucleotide similarity with Enterococcus phage EF653P5 and Enterococcus phage EF653P3.
We have successfully characterized the complete genome sequence of the lytic Dickeya solani bacteriophage W2B, isolated from the Bunus Sewage Treatment Plant. The lytic phage from the Ningirsuvirus family has a 40,385-bp linear double-stranded DNA genome containing 51 coding sequences (CDSs).
A lytic bacteriophage EF_RCK infecting Enterococcus faecalis was isolated from a water sample collected in a raw cockle storage container at Taman Ria market, Sungai Petani, Malaysia. The phage has a 57,848-bp double-stranded DNA genome harboring 107 protein-encoding genes and shares 90.9% nucleotide similarity with Enterococcus phage EFKL (Saphexavirus genus).
A Gram-negative, filamentous aerobic bacterium designated as strain Mgbs1T was isolated on 12 April 2017 from the subsurface soil and leaf litter substrate at the base of a Koompassia malaccensis tree in a tropical peat swamp forest in the northern regions of the state of Selangor, Malaysia (3° 39' 04.7' N 101° 17' 43.7'' E). Phylogenetic analyses based on the full 16S rRNA sequence revealed that strain Mgbs1T belongs to the genus Chitinophaga with the greatest sequence similarity to Chitinophaga terrae KP01T (97.65 %), Chitinophaga jiangningensis DSM27406T (97.58 %), and Chitinophaga dinghuensis DHOC24T (97.17 %). The major fatty acids of strain Mgbs1T (>10 %) are iso-C15 : 0, C16 : 1 ω5c and iso-C17 : 0 3-OH while the predominant respiratory quinone is menaquinone-7. Strain Mgbs1T has a complete genome size of 8.03 Mb, with a G+C content of 48.5 mol%. The DNA-DNA hybridization (DDH) score between strain Mgbs1T and C. jiangningensis DSM27406T was 15.9 %, while in silico DDH values of strain Mgbs1T against C. dinghuensis DHOC24T and C. terrae KP01T were 20.0 and 19.10% respectively. Concurrently, Average Nucleotide Identity (ANI) scores between strain Mgbs1T against all three reference strains are 73.2 %. Based on the phenotypic, chemotaxonomic, and phylogenetic consensus, strain Mgbs1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga extrema sp. nov. is proposed (=DSM 108835T=JCM 33276T).
Here, we present the complete mitochondrial genome of Pachliopta aristolochiae, a Common Rose butterfly from Malaysia. The sequence was generated using Illumina NovaSeq 6000 sequencing platform. The mitogenome is 15,235bp long, consisting of 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and two D-loop regions. The total base composition was (81.6%), with A (39.3%), T (42.3%), C (11.0%) and G (7.3%). The gene order of the three tRNAs was trnM-trnI-trnQ, which differs from the ancestral insect gene order trnI-trnQ-trnM. Phylogenetic tree analysis revealed that the sequenced Pachliopta aristolochiae in this data is closely related to Losaria neptunus (NC 037868), with highly supported ML and BI analysis. The data presented in this work can provide useful resources for other researchers to study deeper into the phylogenetic relationships of Lepidoptera and the diversification of the Pachliopta species. Also, as one of the bioindicator species, this data can be used to assess environmental changes in the terrestrial and aquatic ecosystem via enviromental DNA approahes. The mitogenome of Pachliopta aristolochiae is available in GenBank under the accession number MZ781228.
We characterized the complete genome sequence of the lytic Salmonella enterica bacteriophage PRF-SP1, isolated from Penang National Park, a conserved rainforest in northern Malaysia. The novel phage species from the Autographiviridae family has a 39,966-bp double-stranded DNA (dsDNA) genome containing 49 protein-encoding genes and shares 90.96% similarity with Escherichia phage DY1.
The Great Marquis or Bassarona dunya is a butterfly species commonly found in the tropical regions of Asia, America, and Africa. This butterfly is a member of the subfamily Limenitidinae and the classification within this subfamily has been unstable. Here, we report the first complete mitochondrial genome (mitogenome) of B. dunya sampled from Malaysia. The mitogenome is 15,242 bp long, comprising a set of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and an A + T rich region. All PCGs were initiated by the typical ATN codon, except for COX1 which started with a CGA start codon. Nine PCGs were terminated with a TAA or TAG stop codon, while COX1, COX2, NAD4, and NAD5 ended with an incomplete T. The 12S and 16S rRNAs were 716 bp and 1269 bp in length, respectively. Phylogenetic analysis supported the placement of B. dunya within Limenitidinae with a high support value.
In the present study, the nearly complete mitochondrial genome of Euphaea ochracea was described and its phylogenetic position in the family Euphaeidae was analyzed. Here, we recovered 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs and a partial control region, resulting in a mitogenome length of 15,545bp. All protein-coding genes were initiated by the typical ATN codon except nad3 and nad1, which utilizes the TTG codon. Four protein-coding genes (cox1, cox2, cox3 and nad5) are terminated by an incomplete stop codon T, while others end with either a TAA or TAG codon. The intergenic spacer region, S5, is absent in this mitogenome, supporting the lack of this region as a specific character in damselflies. Phylogenetic analysis showed that the newly sequenced E. ochracea is phylogenetically closer to E. ornata with a high support value.
Schizophrenia is a chronic mental disorder with marked symptoms of hallucination, delusion, and impaired cognitive behaviors. Although multidimensional factors have been associated with the development of schizophrenia, the principal cause of the disorder remains debatable. Microbiome involvement in the etiology of schizophrenia has been widely researched due to the advancement in sequencing technologies. This review describes the contribution of the gut microbiome in the development of schizophrenia that is facilitated by the gut-brain axis. The gut microbiota is connected to the gut-brain axis via several pathways and mechanisms, that are discussed in this review. The role of the oral microbiota, probiotics and prebiotics in shaping the gut microbiota are also highlighted. Lastly, future perspectives for microbiome research in schizophrenia are addressed.
Complete genomes of xenobiotic-degrading microorganisms provide valuable resources for researchers to understand molecular mechanisms involved in bioremediation. Despite the well-known ability of Sphingomonas paucimobilis to degrade persistent xenobiotic compounds, a complete genome sequencing is lacking for this organism. In line with this, we report the first complete genome sequence of Sphingomonas paucimobilis (strain AIMST S2), an organophosphate and hydrocarbon-degrading bacterium isolated from oil-polluted soil at Kedah, Malaysia. The genome was derived from a hybrid assembly of short and long reads generated by Illumina HiSeq and MinION, respectively. The assembly resulted in a single contig of 4,005,505 bases which consisted of 3,612 CDS and 56 tRNAs. An array of genes involved in xenobiotic degradation and plant-growth promoters were identified, suggesting its' potential role as an effective microorganism in bioremediation and agriculture. Having reported the first complete genome of the species, this study will serve as a stepping stone for comparative genome analysis of Sphingomonas strains and other xenobiotic-degrading microorganisms as well as gene expression studies in organophosphate biodegradation.
Ischyja marapok is a moth species from the genus Ischyja, a member of the Lepidoptera family, Erebidae. Due to their wide variation, this family constitutes the largest described species, however, the mitogenome dataset on the genus Ischyja is scarce. Hence, the mitochondrial genome dataset of Ischyja marapok from Malaysia was completely sequenced using the next-generation sequencing technology, Illumina NovaSeq 6000 and analyzed. The mitogenome has a sequence length of 15,421 bp, consisting of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and a control region. The mitogenome is A + T biased (80.6%), with the base composition of A (39.2%), T (41.4%), C (11.9%) and G (7.5%). Among the 13 PCGs, 12 were initiated by the standard ATN codon, except for COX1 which utilizes the CGA start codon. Two PCGs were terminated with an incomplete stop codon T, while others ended with a TAA codon. Phylogenetic tree analyses showed that the sequenced I. marapok resides within the Erebinae subfamily and is closely related to Ischyja manlia (MW664367) with high bootstrap support and posterior probabilities. This dataset presented the mitogenome data of I. marapok from Malaysia, which is valuable for further research of their phylogeny and the diversification of the Ischyja genus. Also, this dataset can be implemented and used as references to assess environmental changes in the terrestrial ecosystem via environmental DNA approaches. The mitogenome of I. marapok is available in GenBank under the accession number ON165249.
Lactococcus lactis is a beneficial lactic acid bacterium commonly studied for its probiotic properties and role in dairy production. Here, we present a complete genome of Lactococcus lactis D1_2, isolated from peat swamp forests. To discover the potential antimicrobial properties, the complete genome of the strain was sequenced and analyzed.
We present a complete genome of Serratia marcescens D1_6 isolated from peat swamp forest. The complete genome for the isolate D1_6 was constructed using data from Oxford Nanopore Technologies and Illumina. The genome of D1_6 has a total length of 4,996,151 bp, comprising a chromosome and a plasmid.
Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
Salmonella infections across the globe are becoming more challenging to control due to the emergence of multidrug-resistant (MDR) strains. Lytic phages may be suitable alternatives for treating these multidrug-resistant Salmonella infections. Most Salmonella phages to date were collected from human-impacted environments. To further explore the Salmonella phage space, and to potentially identify phages with novel characteristics, we characterized Salmonella-specific phages isolated from the Penang National Park, a conserved rainforest. Four phages with a broad lytic spectrum (kills >5 Salmonella serovars) were further characterized; they have isometric heads and cone-shaped tails, and genomes of ~39,900 bp, encoding 49 CDSs. As the genomes share a <95% sequence similarity to known genomes, the phages were classified as a new species within the genus Kayfunavirus. Interestingly, the phages displayed obvious differences in their lytic spectrum and pH stability, despite having a high sequence similarity (~99% ANI). Subsequent analysis revealed that the phages differed in the nucleotide sequence in the tail spike proteins, tail tubular proteins, and portal proteins, suggesting that the SNPs were responsible for their differing phenotypes. Our findings highlight the diversity of novel Salmonella bacteriophages from rainforest regions, which can be explored as an antimicrobial agent against MDR-Salmonella strains.
Here, we present the complete genome of a plant growth-promoting strain, Bacillus stratosphericus AIMST-CREST02 isolated from the bulk soil of a high-yielding paddy plot. The genome is 3,840,451 bp in size with a GC content of 41.25%. Annotation predicted the presence of 3,907 coding sequences, including genes involved in auxin biosynthesis regulation and gamma-aminobutyric acid (GABA) metabolism.
We present the complete genome of a potential plant growth-promoting bacteria Bacillus altitudinis AIMST-CREST03 isolated from a high-yielding paddy plot. The genome is 3,669,202 bp in size with a GC content of 41%. Annotation predicted 3,327 coding sequences, including several genes required for plant growth promotion.