Displaying all 8 publications

Abstract:
Sort:
  1. Abbasi S, Rasouli M
    Genet. Mol. Res., 2017 Sep 21;16(3).
    PMID: 28973742 DOI: 10.4238/gmr16039762
    Gastrointestinal cancers are malignant diseases with high mortality rate. Early diagnosis of patients could improve the results of treatment. Many studies used dermatoglyphics as a biomarker to predict the incidence of genetic diseases and cancers. This study assessed the association between gastrointestinal cancers and particular fingerprint patterns, which could be useful in early diagnosis of these malignancies. The study was conducted on 153 histopathologically confirmed gastrointestinal cancer patients and 299 healthy individuals. The fingerprints were taken by a specific method of rolling the subject's fingers or thumbs in ink. The data were analyzed for the significance using the chi-square test and the t-test. Odds ratio with 95% confidence intervals were calculated. Dermatoglyphic analysis showed that whorl and loop patterns significantly changed in the case group as compared to control. However, the odds ratio suggested that whorl pattern in 6 or more fingers might be a risk factor for developing gastrointestinal cancers. Our results showed that there is an association between fingerprint patterns and gastrointestinal cancers, and so, the dermatoglyphic analysis may aid in the early diagnosis of these cancers.
  2. Abbasi S, Rasouli M
    Mol Med Rep, 2017 Jun;15(6):3983-3988.
    PMID: 28440412 DOI: 10.3892/mmr.2017.6489
    Fanconi Anemia (FA) is an autosomal recessive syndrome characterized by congenital abnormalities, progressive bone marrow failure and Fanconi anemia complementation group A (FANCA) is also a potential breast and ovarian cancer susceptibility gene. A novel allele with tandem duplication of 13 base pair sequence in promoter region was identified. To investigate whether the 13 base pair sequence of tandem duplication in promoter region of the FANCA gene is of high penetrance in patients with breast cancer and to determine if the presence of the duplicated allele was associated with an altered risk of breast cancer, the present study screened DNA in blood samples from 304 breast cancer patients and 295 normal individuals as controls. The duplication allele had a frequency of 35.4 and 21.2% in patients with breast cancer and normal controls, respectively. There was a significant increase in the frequency of the duplication allele in patients with familial breast cancer compared with controls (45.1%, P=0.001). Furthermore, the estimated risk of breast cancer in individuals with a homozygote [odds ratio (OR), 4.093; 95% confidence intervals (CI), 1.957‑8.561] or heterozygote duplicated genotype (OR, 3.315; 95% CI, 1.996‑5.506) was higher compared with the corresponding normal homozygote genotype. In conclusion, the present study indicated that the higher the frequency of the duplicated allele, the higher the risk of breast cancer. To the best of our knowledge, the present study is the first to report FANCA gene duplication in patients with breast cancer.
  3. Abbasi S, Rasouli M
    PMID: 29353131 DOI: 10.1016/j.ejogrb.2017.10.020
    OBJECTIVES: Fingerprints have so far been used for determining the basis of certain malignant diseases, with positive outcomes. Considering the high rates of cancer-related mortality in Iran, this study was conducted for the purpose of examining the dermatoglyphic pattern of fingers in patients with gynecological cancers as compared to healthy people.

    STUDY DESIGN: The present study was conducted on 151 women with gynecological cancers as the case group and 152 healthy women with no history of such cancers as control group. The dematographic details of participants from both control and case groups were collected using a checklist, and the pattern of their fingerprints was prepared and examined. The data were analyzed for their significance using chi-square test and t- test. Odds ratio with 95% confidence intervals were calculated.

    RESULTS: Dermatoglyphic analysis showed that arch and loop patterns significantly changed in cases group as compared to control. However, the odds ratio suggested that loop pattern in 6 or more fingers might be a risk factor for developing gynecological cancers.

    CONCLUSION: Our results showed that there is an association between fingerprint patterns and gynecological cancers and so, dermatoglyphic analysis may aid in the early diagnosis of these cancers.

  4. Rasouli M, Allaudin ZN, Omar AR, Ahmad Z
    Curr Gene Ther, 2013 Aug;13(4):229-39.
    PMID: 23721205 DOI: 10.2174/15665232113139990002
    Poorly controlled diabetes mellitus can result in serious complications. Gene therapy is increasingly being considered as an alternative approach to treat diabetes, because of its ability to induce physiological insulin secretion and it allows patients to escape insulin injections. The properties of gut K and L-cells, including glucose sensitivity, the ability to process insulin and a regulated secretion pathway support their use as surrogate β-cells. Previous in vitro studies have provided sufficient evidence supporting the use of these cells for gene therapy studies. Therefore, we examined the ability of K and L-cells to produce insulin in diabetic mice. Chitosan nanoparticles were used to transfer the insulin gene into intestinal cells via oral administration. The efficiency of chitosan as a gene vehicle was investigated through the use of reporter gene. Insulin mRNA and protein expression levels were measured by RT-PCR and ELISA, respectively. Blood glucose testing revealed that this treatment reduced glucose levels in diabetic mice. The decrease in blood glucose level in the first week of treatment was greater in mice with K-cell specific insulin expression compared with mice with L-cell-specific insulin expression. These results indicate that inducing insulin secretion in K-cells conferred a quicker response to gene therapy.
  5. Rasouli M, Ahmad Z, Omar AR, Allaudin ZN
    BMC Biotechnol, 2011 Nov 03;11:99.
    PMID: 22047106 DOI: 10.1186/1472-6750-11-99
    BACKGROUND: Diabetes mellitus is a complicated disease with a pathophysiology that includes hyperinsulinemia, hyperglycemia and other metabolic impairments leading to many clinical complications. It is necessary to develop appropriate treatments to manage the disease and reduce possible acute and chronic side effects. The advent of gene therapy has generated excitement in the medical world for the possible application of gene therapy in the treatment of diabetes. The glucagon-like peptide-1 (GLP-1) promoter, which is recognised by gut L-cells, is an appealing candidate for gene therapy purposes. The specific properties of L-cells suggest that L-cells and the GLP-1 promoter would be useful for diabetes therapy approaches.

    RESULTS: In this study, L-cells were isolated from a primary intestinal cell line to create suitable target cells for insulin expression studies. The isolated cells displayed L-cell properties and were therefore used as an L-cell surrogate. Next, the isolated L-cells were transfected with the recombinant plasmid consisting of an insulin gene located downstream of the GLP-1 promoter. The secretion tests revealed that an increase in glucose concentration from 5 mM to 25 mM induced insulin gene expression in the L-cells by 2.7-fold. Furthermore, L-cells quickly responded to the glucose stimulation; the amount of insulin protein increased 2-fold in the first 30 minutes and then reached a plateau after 90 minutes.

    CONCLUSION: Our data showed that L-cells efficiently produced the mature insulin protein. In addition, the insulin protein secretion was positively regulated with glucose induction. In conclusion, GLP-1 promoter and L-cell could be potential candidates for diabetes gene therapy agents.

  6. Ahmad Z, Rasouli M, Azman AZ, Omar AR
    BMC Biotechnol, 2012 Sep 19;12:64.
    PMID: 22989329 DOI: 10.1186/1472-6750-12-64
    BACKGROUND: Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features.

    RESULTS: In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant.

    CONCLUSION: The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

  7. Rasouli M, Abbasi S, Sarsaifi K, Hani H, Ahmad Z, Omar AR
    Appl Biochem Biotechnol, 2014 Jan;172(1):394-404.
    PMID: 24081707 DOI: 10.1007/s12010-013-0514-6
    Enteroendocrine cells are the largest population of hormone-producing cells in the body and play important roles in many aspects of body functions. The enteroendocrine cell population is divided into different subpopulations that secrete different hormones and peptides. Characterization of each subpopulation is particularly useful for analyzing the cellular mechanisms responsible for specific cell types. Therefore, the necessity of a pure cell line for a specific study purpose was the important motivation for the separation of cell lines for each subpopulation of enteroendocrine cells. The present research introduces a method for the isolation of L-cells, one of the important subpopulations of enteroendocrine cells. The antibiotic selection method was conducted in order to isolate the L-cells from a heterogonous population of intestinal cell line. In this method, a neomycin resistance gene (as selected marker) was expressed under the control of a specific promoter of L-cells. After transfection of manipulated plasmid, only the cells which determine the specific promoter and express neomycin resistance protein would be able to survive under Geneticin antibiotic treatment condition. In order to confirm that the isolated cells were L-cells, reverse transcriptase polymerase chain reaction (PCR) and quantitative PCR assays were performed. Based on the results, the isolated cells were pure L-cells that could be able to express specific mRNA of L-cells efficiently. This technique provides a unique method for the isolation and purification of any cell line. The purified isolated L-cells by this method can be used for future studies and for analyzing cellular mechanisms that involve L-cells' functions.
  8. Hani H, Allaudin ZN, Mohd-Lila MA, Sarsaifi K, Rasouli M, Tam YJ, et al.
    Xenotransplantation, 2017 05;24(3).
    PMID: 28397308 DOI: 10.1111/xen.12302
    BACKGROUND: Dead islets replaced with viable islets are a promising offer to restore normal insulin production to a person with diabetes. The main reason for establishing a new islet source for transplantation is the insufficiency of human donor pancreas while using xenogeneic islets perhaps assists this problem. The expression of PDX1 is essential for the pancreas expansion. In mature β-cells, PDX1 has several critical roles such as glucose sensing, insulin synthesis, and insulin secretion. In this study, we aimed to evaluate the expression of pancreatic duodenal homeobox-1 (PDX1) in treated caprine islets in culture and to assess the protective effects of antioxidant factors on the PDX1 gene in cultured caprine islets.

    MATERIALS AND METHODS: Purified islets were treated with serum-free, serum, IBMX, tocopherol, or IBMX and tocopherol media. Quantitative polymerase chain reaction and Western blotting were carried out to compare the expression levels of PDX1 in treated purified islets cultured with different media.

    RESULTS: Islets treated with IBMX/tocopherol exhibited the highest fold change in the relative expression of PDX1 on day 5 post-treatment (relative expression: 6.80±2.08), whereas serum-treated islets showed the lowest fold changes in PDX1 expression on day 5 post-treatment (0.67±0.36), as compared with the expression on day 1 post-treatment. Insulin production and viability tests of purified islets showed superiority of islet at supplemented serum-free media with IBMX/tocopherol compared to other cultures (53.875%±1.59%).

    CONCLUSIONS: Our results indicated that supplemented serum-free medium with tocopherol and IBMX enhances viability and PDX1 gene expression compared to serum-added and serum-free media.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links