Displaying all 4 publications

Abstract:
Sort:
  1. Jesuraj SAV, Sarker MMR, Ming LC, Praya SMJ, Ravikumar M, Wui WT
    PLoS One, 2017;12(8):e0181745.
    PMID: 28813436 DOI: 10.1371/journal.pone.0181745
    Microbial anti-cancer enzymes have been proven to be effective and economical agents for cancer treatment. Aeromonas veronii has been identified as a microorganism with the potential to produce L-glutaminase, an anticancer agent effective against acute lymphocytic leukaemia. In this study, a selective medium of Aeromonas veronii was used to culture the microorganism. Strain improvement was done by adaptive and induced mutational techniques. A selective minimal agar media was incorporated for the growth of the strain which further supports adaptive mutation. Strains were also UV-irradiated and successively treated with N-methyl-N'-nitro-N-nitrosoguanidine to find a resilient strain capable of producing L-glutaminase efficiently. The Plackett-Burman design and central composite designs were used to screen and optimize additional carbon and nitrogen sources. Adaptive mutation resulted in promising yield improvements compared to native strain (P<0.001). The mean yield of 30 treated colonies from the induced mutation was significantly increased compared to the non-induced strain (P< 0.001). The economically feasible statistical designs were found to reinforce each other in order to maximize the yield of the enzyme. The interactions of nutrient factors were understood from the 3D response surface plots. The model was found to be a perfect fit in terms of maximizing enzyme yield, with the productivity improving at every stage to a fourfold output of enzyme (591.11 ±7.97 IU/mL) compared to the native strain (135±3.51 IU/mL).
  2. Singh R, Samuel MS, Ravikumar M, Ethiraj S, Kirankumar VS, Kumar M, et al.
    Chemosphere, 2023 Dec;344:140311.
    PMID: 37769916 DOI: 10.1016/j.chemosphere.2023.140311
    The carbon dioxide (CO2) crisis is one of the world's most urgent issues. Meeting the worldwide targets set for CO2 capture and storage (CCS) is crucial. Because it may significantly reduce energy consumption compared to traditional amine-based adsorption capture, adsorption dependant CO2 capture is regarded as one of the most hopeful techniques in this paradigm. The expansion of unique, critical edge adsorbent materials has received most of the research attention to date, with the main objective of improving adsorption capacity and lifespan while lowering the temperature of adsorption, thereby lowering the energy demand of sorbent revival. There are specific materials needed for each step of the carbon cycle, including capture, regeneration, and conversion. The potential and efficiency of metal-organic frameworks (MOFs) in overcoming this obstacle have recently been proven through research. In this study, we pinpoint MOFs' precise structural and chemical characteristics that have contributed to their high capture capacity, effective regeneration and separation processes, and efficient catalytic conversions. As prospective materials for the next generation of energy storage and conversion applications, carbon-based compounds like graphene, carbon nanotubes, and fullerenes are receiving a lot of interest. Their distinctive physicochemical characteristics make them suitable for these popular study topics, including structural stability and flexibility, high porosity, and customizable physicochemical traits. It is possible to precisely design the interior of MOFs to include coordinatively unsaturated metal sites, certain heteroatoms, covalent functionalization, various building unit interactions, and integrated nanoscale metal catalysts. This is essential for the creation of MOFs with improved performance. Utilizing the accuracy of MOF chemistry, more complicated materials must be built to handle selectivity, capacity, and conversion all at once to achieve a comprehensive solution. This review summarizes, the most recent developments in adsorption-based CO2 combustion capture, the CO2 adsorption capacities of various classes of solid sorbents, and the significance of advanced carbon nanomaterials for environmental remediation and energy conversion. This review also addresses the difficulties and potential of developing carbon-based electrodes for energy conversion and storage applications.
  3. Velayutham NK, Thamaraikani T, Wahab S, Khalid M, Ramachawolran G, Abullais SS, et al.
    Front Pharmacol, 2024;15:1343756.
    PMID: 38299157 DOI: 10.3389/fphar.2024.1343756
    [This corrects the article DOI: 10.3389/fphar.2023.1150270.].
  4. Velayutham NK, Thamaraikani T, Wahab S, Khalid M, Ramachawolran G, Abullais SS, et al.
    Front Pharmacol, 2023;14:1150270.
    PMID: 37056983 DOI: 10.3389/fphar.2023.1150270
    Vascular endothelial growth factor (VEGF) signals cell survival, cell migration, osteogenesis, cell proliferation, angiogenesis, and vascular permeability by binding to VEGF receptor 2 (VEGFR-2). Osteosarcoma is the most common primary bone cancer, majorly affects young adults. Activation of VEGFR-2 signaling is a therapeutic target for osteosarcoma. The present study aimed to evaluate the potency of stylopine in regulation of the VEGFR-2 signaling pathway and its anti-tumour effect human MG-63 osteosarcoma cells. The in silico study on benzylisoquinoline alkaloids was carried out for analyzing and shortlisting of compounds using a virtual screening, Lipinski's rule, bioavailability graphical RADAR plot, pharmacokinetics, toxicity, and molecular docking studies. Among the benzylisoquinoline alkaloids, stylopine was selected and subjected to in-vitro studies against human MG-63 osteosarcoma cells. Various experiments such as MTT assay, EtBr/AO staining, mitochondrial membrane potential assessment, transwell migration assay, gene expression analysis by a quantitative real time polymerase chain reaction (qRT-PCR) method, SDS-PAGE followed by immunoblotting were performed to evaluate its anti-tumour effect as compared to standard axitinib. The MTT assay indicates that stylopine inhibits cell proliferation in MG-63 cells. Similarly, as confirmed by the EtBr/Ao staining method, the MMP assay indicates that stylopine induces mitochondrial membrane damage and apoptosis as compared to axitinib. Moreover, stylopine inhibits the VEGF-165 induced MG-63 cell migration by a trans-well migration assay. The immunoblotting and qRT-PCR analysis showed that stylopine inhibits the VEGF-165 induced VEGFR2 expression in MG-63 cells. It is concluded that stylopine has potential to regulate VEGFR2 and can inhibit osteosarcoma cells to offer a new drug candidate for the treatment of bone cancer in future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links