Displaying all 15 publications

Abstract:
Sort:
  1. Yusof ENM, Tahir MIM, Ravoof TBSA, Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):543-549.
    PMID: 28435717 DOI: 10.1107/S2056989017003991
    The title di-thio-carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl-benzyl 2-[(E)-3-phenyl-allyl-idene]hydrazinecarbodi-thio-ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl-ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol-ecule approximates mirror symmetry with the 4-tolyl group bis-ected by the plane. The configuration about both double bonds in the N-N=C-C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio-amide synthons, {⋯HNCS}2, are formed via N-H⋯S(thione) hydrogen bonds. Connections between the dimers via C-H⋯π inter-actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter-action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N-H⋯S hydrogen bonds is about 0.94 kcal mol(-1) more stable than that in (I).
  2. Yusof ENM, Nasri NM, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Jun 01;75(Pt 6):794-799.
    PMID: 31391968 DOI: 10.1107/S2056989019006145
    The title CuII complex, [Cu(C13H11N2OS2)2], features a trans-N2S2 donor set as a result of the CuII atom being located on a crystallographic centre of inversion and being coordinated by thiol-ate-S and imine-N atoms derived from two di-thio-carbazate anions. The resulting geometry is distorted square-planar. In the crystal, π(chelate ring)-π(fur-yl) [inter-centroid separation = 3.6950 (14) Å and angle of inclination = 5.33 (13)°] and phenyl-C-H⋯π(phen-yl) inter-actions sustain supra-molecular layers lying parallel to (02). The most prominent inter-actions between layers, as confirmed by an analysis of the calculated Hirshfeld surface, are phenyl-H⋯H(phen-yl) contacts. Indications for Cu⋯Cg(fur-yl) contacts (Cu⋯Cg = 3.74 Å) were also found. Inter-action energy calculations suggest the contacts between mol-ecules are largely dispersive in nature.
  3. Omar SA, Chah CK, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Feb 01;74(Pt 2):261-266.
    PMID: 29850067 DOI: 10.1107/S2056989018001330
    In the title di-thio-carbazate ester, C16H17N3S2 (systematic name: (Z)-{[(benzyl-sulfan-yl)methane-thio-yl]amino}[1-(6-methyl-pyridin-2-yl)ethyl-idene]amine), the central methyl-idenehydrazinecarbodi-thio-ate (C2N2S2) core is almost planar (r.m.s. deviation = 0.0111 Å) and forms dihedral angles of 71.67 (3)° with the approximately orthogonally inclined thio-ester phenyl ring, and 7.16 (7)° with the approximately coplanar substituted pyridyl ring. The latter arrangement and the Z configuration about the imine-C=N bond allows for the formation of an intra-molecular hydrazine-N-H⋯N(pyrid-yl) hydrogen bond that closes an S(6) loop. In the crystal, phenyl-C-H⋯S(thione), methyl-ene-C-H⋯π(pyrid-yl), methyl-ene- and phenyl-C-H⋯π(phen-yl) contacts connect mol-ecules into supra-molecular layers propagating in the bc plane; the layers stack along the a axis with no directional inter-actions between them. The analysis of the Hirshfeld surface indicates the relative importance of an intra-layer phenyl-H⋯H(pyrid-yl) contact upon the mol-ecular packing.
  4. Tan MY, Kwong HC, Crouse KA, Ravoof TBSA, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2021 Aug 01;77(Pt 8):788-794.
    PMID: 34422302 DOI: 10.1107/S2056989021006666
    The title thio-urea derivative, C17H19N3OS, adopts a U-shaped conformation with the dihedral angle between the terminal aromatic rings being 73.64 (5)°. The major twist in the mol-ecule occurs about the ethane bond with the Ci-Ce-Ce-Cb torsion angle being -78.12 (18)°; i = imine, e = ethane and b = benzene. The configuration about the imine bond is E, the N-bound H atoms lie on opposite sides of the mol-ecule and an intra-molecular amine-N-H⋯N(imine) hydrogen bond is evident. In the mol-ecular packing, hydroxyl-O-H⋯S(thione) and amine-N-H⋯O hydrogen bonding feature within a linear, supra-molecular chain. The chains are connected into a layer in the ab plane by a combination of methyl-ene-C-H⋯S(thione), methyl-ene-C-H⋯O(hydrox-yl), methyl-C-H⋯π(phen-yl) and phenyl-C-H⋯π(hy-droxy-benzene) inter-actions. The layers stack without directional inter-actions between them. The analysis of the calculated Hirshfeld surface highlights the presence of weak methyl-C-H⋯O(hydrox-yl) and H⋯H inter-actions in the inter-layer region. Computational chemistry indicates that dispersion energy is the major contributor to the overall stabilization of the mol-ecular packing.
  5. Tan MY, Kwong HC, Crouse KA, Ravoof TBSA, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2021 Aug 01;77(Pt 8):839-846.
    PMID: 34422312 DOI: 10.1107/S2056989021007398
    The title zinc bis-(thio-semicarbazone) complex, [Zn(C22H17N4O2S)2], comprises two N,S-donor anions, leading to a distorted tetra-hedral N2S2 donor set. The resultant five-membered chelate rings are nearly planar and form a dihedral angle of 73.28 (3)°. The configurations about the endocyclic- and exocyclic-imine bonds are Z and E, respectively, and that about the ethyl-ene bond is E. The major differences in the conformations of the ligands are seen in the dihedral angles between the chelate ring and nitro-benzene rings [40.48 (6) cf. 13.18 (4)°] and the N-bound phenyl and nitro-benzene ring [43.23 (8) and 22.64 (4)°]. In the crystal, a linear supra-molecular chain along the b-axis direction features amine-N-H⋯O(nitro) hydrogen bonding. The chains assemble along the 21-screw axis through a combination of phenyl-C-H⋯O(nitro) and π(chelate ring)-π(phen-yl) contacts. The double chains are linked into a three-dimensional architecture through phenyl-C-H⋯O(nitro) and nitro-O⋯π(phen-yl) inter-actions.
  6. Arif Tawfeeq N, Kwong HC, Mohamed Tahir MI, Ravoof TBSA
    Acta Crystallogr E Crystallogr Commun, 2019 Nov 01;75(Pt 11):1613-1619.
    PMID: 31709078 DOI: 10.1107/S2056989019013458
    In the title hydrazinecarbodi-thio-ate derivative, C27H26N2O2S2, the asymmetric unit is comprised of four mol-ecules (Z = 8 and Z' = 4). The 4-meth-oxy-phenyl rings are slightly twisted away from their attached olefinic double bonds [torsion angles = 5.9 (4)-19.6 (4)°]. The azomethine double bond has an s-trans configuration relative to one of the C=C bonds and an s-cis configuration relative to the other [C=C-C= N = 147.4 (6)-175.7 (2) and 15.3 (3)-37.4 (7)°, respectively]. The torsion angles between the azomethine C=N double bond and hydrazine-1-carbodi-thio-ate moiety indicate only small deviations from planarity, with torsion angles ranging from 0.9 (3) to 6.9 (3)° and from 174.9 (3) to 179.7 (2)°, respectively. The benzyl ring and the methyl-enesulfanyl moiety are almost perpendicular to each other, as indicated by their torsion angles [range 93.7 (3)-114.6 (2)°]. In the crystal, mol-ecules are linked by C-H⋯O, N-H⋯S and C-H⋯π(ring) hydrogen-bonding inter-actions into a three-dimensional network. Structural details of related benzyl hydrazine-1-carbodi-thio-ate are surveyed and compared with those of the title compound.
  7. Arif Tawfeeq N, Kwong HC, Mohamed Tahir MI, Ravoof TBSA
    Acta Crystallogr E Crystallogr Commun, 2019 Jun 01;75(Pt 6):774-779.
    PMID: 31391964 DOI: 10.1107/S2056989019006480
    In the title bis-chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo-phenyl rings [torsion angles = -10.2 (4) and -6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C-C=O = 160.7 (3) and -15.2 (4)°, respectively]. The dihedral angle between the 4-bromo-phenyl rings is 51.56 (2)°. In the crystal, mol-ecules are linked into a zigzag chain propagating along [001] by weak C-H⋯π inter-actions. The conformations of related bis-chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu-antify the inter-molecular contacts.
  8. Tan MY, Crouse KA, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Nov 01;73(Pt 11):1607-1611.
    PMID: 29152334 DOI: 10.1107/S2056989017014128
    The title compound, C23H21N3O2, is constructed about an almost planar disubstituted amino-urea residue (r.m.s. deviation = 0.0201 Å), which features an intra-molecular amine-N-H⋯N(imine) hydrogen bond. In the 'all-trans' chain connecting this to the terminal meth-oxy-benzene residue, the conformation about each of the imine and ethyl-ene double bonds is E. In the crystal, amide-N-H⋯O(carbon-yl) hydrogen bonds connect centrosymmetrically related mol-ecules into dimeric aggregates, which also incorporate ethyl-ene-C-H⋯O(amide) inter-actions. The dimers are linked by amine-phenyl-C-H⋯π(imine-phen-yl) and meth-oxy-benzene-C-H⋯π(amine-phen-yl) inter-actions to generate a three-dimensional network. The importance of C-H⋯π inter-actions in the mol-ecular packing is reflected in the relatively high contributions made by C⋯H/H⋯C contacts to the Hirshfeld surface, i.e. 31.6%.
  9. Tan MY, Crouse KA, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Jan 01;74(Pt 1):21-27.
    PMID: 29416884 DOI: 10.1107/S2056989017017273
    Two independent mol-ecules (A and B) comprise the asymmetric unit of the title compound, C18H21N3O3. The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN2O urea core [dihedral angles = 25.57 (11) (A) and 29.13 (10)° (B)]. The second amine is connected to an imine (E conformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intra-molecular amine-N-H⋯N(imine) and hydroxyl-O-H⋯O(meth-oxy) hydrogen bonds close S(5) loops in each case. The mol-ecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) (A) and 48.55 (7)° (B). In the crystal, amide-N-H⋯O(amide) hydrogen bonds link the mol-ecules A and B via an eight-membered {⋯HNCO}2 synthon. Further associations between mol-ecules, leading to supra-molecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O-H⋯N(imine) and phenyl-amine-N-H⋯O(meth-oxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C-H⋯O(hy-droxy) inter-actions. A detailed analysis of the calculated Hirshfeld surfaces shows mol-ecules A and B participate in very similar inter-molecular inter-actions and that any variations relate to conformational differences between the mol-ecules.
  10. Tan MY, Crouse KA, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Feb 01;74(Pt 2):151-157.
    PMID: 29850043 DOI: 10.1107/S2056989018000282
    The title ZnII complex, [Zn(C19H20N3OS)2] {systematic name: bis-[(N-ethyl-N'-{(Z)-[(2E)-3-(4-meth-oxy-phen-yl)-1-phenyl-prop-2-en-1-yl-idene]amino}-carb-am-im-id-o-yl)sulfanido]zinc(II)}, features a tetra-hedrally coordinated ZnII ion within an N2S2 donor set provided by two N,S-chelating thio-semicarbazone anions. The resulting five-membered Zn,C,N2,S chelate rings adopt different conformations, i.e. almost planar and an envelope with the Zn atom being the flap atom. The configuration about the imine bond within the chelate ring is Z but those about the exocyclic imine and ethyl-ene bonds are E. In the crystal, supra-molecular [100] chains mediated by thio-amide-N-H⋯S(thione) hydrogen bonds and eight-membered thio-amide {⋯HNCS}2 synthons are observed. A range of inter-actions, including C-H⋯O, C-H⋯π, C-H⋯π(chelate ring) and π(meth-oxy-benzene)-π(chelate ring) consolidate the packing. The Hirshfeld surface analysis performed on the title complex also indicates the influence of the inter-actions involving the chelate rings upon the packing along with the more conventional contacts.
  11. Tan MY, Crouse KA, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 7):1001-1008.
    PMID: 28775870 DOI: 10.1107/S2056989017008064
    The title ZnII complex, [Zn(C18H18N3S)2], (I), features two independent but chemically equivalent mol-ecules in the asymmetric unit. In each, the thio-semicarbazonate monoanion coordinates the ZnII atom via the thiol-ate-S and imine-N atoms, with the resulting N2S2 donor set defining a distorted tetra-hedral geometry. The five-membered ZnSCN2 chelate rings adopt distinct conformations in each independent mol-ecule, i.e. one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two mol-ecules comprising the asymmetric unit are linked by amine-N-H⋯N(imine) and amine-N-H⋯S(thiol-ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C-H⋯S(thiol-ate) inter-actions and are linked into a zigzag supra-molecular chain along the c axis via amine-N-H⋯S(thiol-ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H⋯π(phen-yl) and π-π inter-actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter-actions formed by the independent mol-ecules in the crystal and the impact of the π-π inter-actions between chelate and phenyl rings.
  12. Yusof ENM, Kwong HC, Karunakaran T, Ravoof TBSA, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2021 Mar 01;77(Pt 3):286-293.
    PMID: 33953953 DOI: 10.1107/S2056989021001870
    The title diorganotin Schiff base derivative, [Sn(C4H9)2(C15H13N3O2S)], features a penta-coordinated tin centre defined by the N,O,S-donor atoms of the di-anionic Schiff base ligand and two methyl-ene-C atoms of the n-butyl substituents. The resultant C2NOS donor set defines a geometry inter-mediate between trigonal-bipyramidal and square-pyramidal. In the crystal, amine-N-H⋯O(meth-oxy) hydrogen bonding is found in a helical, supra-molecular chain propagating along the b-axis direction. The chains are assembled into a layer parallel to (01) with methyl-ene-C-H⋯π(phen-yl) inter-actions prominent; layers stack without directional inter-actions between them. The analysis of the calculated Hirshfeld surface showed the presence of weak methyl-ene-C-H⋯π(phen-yl) inter-actions and short H⋯H contacts in the inter-layer region. Consistent with the nature of the identified contacts, the stabilization of the crystal is dominated by the dispersion energy term.
  13. Mohanadas D, Mohd Abdah MAA, Azman NHN, Ravoof TBSA, Sulaiman Y
    Sci Rep, 2021 Jun 03;11(1):11747.
    PMID: 34083589 DOI: 10.1038/s41598-021-91100-x
    A novel poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/copper-based metal-organic framework (PrGO/HKUST-1) has been successfully fabricated by incorporating electrochemically synthesized poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (PrGO) and hydrothermally synthesized copper-based metal-organic framework (HKUST-1). The field emission scanning microscopy (FESEM) and elemental mapping analysis revealed an even distribution of poly(3,4-ethylenedioxythiophene) (PEDOT), reduced graphene oxide (rGO) and HKUST-1. The crystalline structure and vibration modes of PrGO/HKUST-1 were validated utilizing X-ray diffraction (XRD) as well as Raman spectroscopy, respectively. A remarkable specific capacitance (360.5 F/g) was obtained for PrGO/HKUST-1 compared to HKUST-1 (103.1 F/g), PrGO (98.5 F/g) and PEDOT (50.8 F/g) using KCl/PVA as a gel electrolyte. Moreover, PrGO/HKUST-1 composite with the longest charge/discharge time displayed excellent specific energy (21.0 Wh/kg), specific power (479.7 W/kg) and an outstanding cycle life (95.5%) over 4000 cycles. Thus, the PrGO/HKUST-1 can be recognized as a promising energy storage material.
  14. Lai LC, Rahman CNBCA, Tahir MIM, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Feb 01;74(Pt 2):256-260.
    PMID: 29850066 DOI: 10.1107/S2056989018001305
    The title disubstituted thio-urea derivative, C10H14N4S, features an almost planar imine (E configuration, C3N) core flanked by thio-urea (CN2S) and methyl-pyridyl (C5N) residues (each plane has a r.m.s. deviation of the respective fitted atoms of 0.0066 Å). The dihedral angles between the core and the thio-urea and pyridyl residues are 20.25 (8) and 7.60 (9)°, respectively, indicating twists in the mol-ecule; the dihedral angle between the outer planes is 13.62 (7)°. There is an anti-disposition of the amine-N-H atoms which allows for the formation of an intra-molecular amine-N-H⋯N(imine) hydrogen bond that closes an S(5) loop. In the crystal, amine-N-H⋯N(pyrid-yl) hydrogen bonds lead to zigzag (glide symmetry) supra-molecular chains along the c-axis direction. These are connected into a supra-molecular layer propagating in the bc plane by thio-amide-N-H⋯S(thione) hydrogen bonds via eight-membered thio-amide {⋯HNCS}2 synthons.
  15. Yusof ENM, Latif MAM, Tahir MIM, Sakoff JA, Simone MI, Page AJ, et al.
    Int J Mol Sci, 2019 Feb 15;20(4).
    PMID: 30781445 DOI: 10.3390/ijms20040854
    Six new organotin(IV) compounds of Schiff bases derived from S-R-dithiocarbazate [R = benzyl (B), 2- or 4-methylbenzyl (2M and 4M, respectively)] condensed with 2-hydroxy-3-methoxybenzaldehyde (oVa) were synthesised and characterised by elemental analysis, various spectroscopic techniques including infrared, UV-vis, multinuclear (¹H, 13C, 119Sn) NMR and mass spectrometry, and single crystal X-ray diffraction. The organotin(IV) compounds were synthesised from the reaction of Ph₂SnCl₂ or Me₂SnCl₂ with the Schiff bases (S2MoVaH/S4MoVaH/SBoVaH) to form a total of six new organotin(IV) compounds that had a general formula of [R₂Sn(L)] (where L = Schiff base; R = Ph or Me). The molecular geometries of Me₂Sn(S2MoVa), Me₂Sn(S4MoVa) and Me₂Sn(SBoVa) were established by X-ray crystallography and verified using density functional theory calculations. Interestingly, each experimental structure contained two independent but chemically similar molecules in the crystallographic asymmetric unit. The coordination geometry for each molecule was defined by thiolate-sulphur, phenoxide-oxygen and imine-nitrogen atoms derived from a dinegative, tridentate dithiocarbazate ligand with the remaining positions occupied by the methyl-carbon atoms of the organo groups. In each case, the resulting five-coordinate C₂NOS geometry was almost exactly intermediate between ideal trigonal-bipyramidal and square-pyramidal geometries. The cytotoxic activities of the Schiff bases and organotin(IV) compounds were investigated against EJ-28 and RT-112 (bladder), HT29 (colon), U87 and SJ-G2 (glioblastoma), MCF-7 (breast) A2780 (ovarian), H460 (lung), A431 (skin), DU145 (prostate), BE2-C (neuroblastoma) and MIA (pancreatic) cancer cell lines and one normal breast cell line (MCF-10A). Diphenyltin(IV) compounds exhibited greater potency than either the Schiff bases or the respective dimethyltin(IV) compounds. Mechanistic studies on the action of these compounds against bladder cancer cells revealed that they induced the production of reactive oxygen species (ROS). The bladder cancer cells were apoptotic after 24 h post-treatment with the diphenyltin(IV) compounds. The interactions of the organotin(IV) compounds with calf thymus DNA (CT-DNA) were experimentally explored using UV-vis absorption spectroscopy. This study revealed that the organotin(IV) compounds have strong DNA binding affinity, verified via molecular docking simulations, which suggests that these organotin(IV) compounds interact with DNA via groove-binding interactions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links