Displaying all 8 publications

Abstract:
Sort:
  1. Ding CH, Situ SF, Steven A, Razak MFA
    Ann Clin Lab Sci, 2019 09;49(4):546-549.
    PMID: 31471347
    Candida auris is an emerging pathogenic yeast responsible for nosocomial infections with high mortality, on a global scale. A 65-year-old woman with hypovolemic shock and severe metabolic acidosis was intubated and admitted to the intensive care unit (ICU). Shortly after admission, she developed ventilator-associated pneumonia caused by multidrug-resistant Acinetobacter baumannii, which necessitated treatment with high-dose ampicillin-sulbactam. Two weeks later, a yeast was cultured from her blood. It formed pale pink colonies on CHROMagar Candida medium and produced predominantly oval budding yeast cells with the occasional rudimentary pseudohyphae on cornmeal agar. ID 32 C identified the yeast as Candida sake However, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and sequencing of the D1/D2 region of the 28S rRNA gene identified the yeast as C. auris.
  2. Firdaus A, Anuar NB, Razak MFA, Hashem IAT, Bachok S, Sangaiah AK
    J Med Syst, 2018 May 04;42(6):112.
    PMID: 29728780 DOI: 10.1007/s10916-018-0966-x
    The increasing demand for Android mobile devices and blockchain has motivated malware creators to develop mobile malware to compromise the blockchain. Although the blockchain is secure, attackers have managed to gain access into the blockchain as legal users, thereby comprising important and crucial information. Examples of mobile malware include root exploit, botnets, and Trojans and root exploit is one of the most dangerous malware. It compromises the operating system kernel in order to gain root privileges which are then used by attackers to bypass the security mechanisms, to gain complete control of the operating system, to install other possible types of malware to the devices, and finally, to steal victims' private keys linked to the blockchain. For the purpose of maximizing the security of the blockchain-based medical data management (BMDM), it is crucial to investigate the novel features and approaches contained in root exploit malware. This study proposes to use the bio-inspired method of practical swarm optimization (PSO) which automatically select the exclusive features that contain the novel android debug bridge (ADB). This study also adopts boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction that detects unknown root exploit, and scrutinized three categories of features including (1) system command, (2) directory path and (3) code-based. The evaluation gathered from this study suggests a marked accuracy value of 93% with Logitboost in the simulation. Logitboost also helped to predicted all the root exploit samples in our developed system, the root exploit detection system (RODS).
  3. Subahir MN, Jeffree MS, Hassan MR, Razak MFA, Mohamad SNG, Fong SY, et al.
    J Infect Dev Ctries, 2019 04 30;13(4):274-277.
    PMID: 32045370 DOI: 10.3855/jidc.11199
    INTRODUCTION: Norovirus (NoV) is a contagious virus causing acute gastroenteritis and is mainly responsible for diarrheal outbreak in closed settings. The aims of this study were to describe the epidemiological characteristic of an outbreak in a boarding school, to assess the extent of the outbreak and to implement appropriate control measures.

    METHODOLOGY: A descriptive study was conducted to describe the epidemiological characteristics of the outbreak. Data on demographic details, onset of abdominal symptoms, food intake history and contact with ill person three days prior to illness were obtained.

    RESULTS: Twelve fresh stool and 14 food samples were tested for NoV and enteric pathogens, respectively. Out of 745 students, 42 (5.6%) were infected during this outbreak. Predominant clinical features were diarrhea (76.1%), vomiting (71.4%) and abdominal pain (67%). Eight (67%) stool samples and six (43.9%)food samples were positive for NoV and total coliforms, respectively. The dissemination of the disease was due to poor hygiene practices among students. Quarantine was imposed until the last case on September 28, 2016. The outbreak was declared over on September 30, 2016.

    CONCLUSIONS: A NoV outbreak was determined first time in Malaysia. Environmental assessment showed poor hygienic conditions in the school's kitchen. The number of infected students increased considerably despite the implementation of preventive and control measures. Quarantine was effective to stop the outbreak which is characteristics of NoV outbreak.

  4. Chan KG, Loke MF, Ong BL, Wong YL, Hong KW, Tan KH, et al.
    PeerJ, 2015;3:e1367.
    PMID: 26587340 DOI: 10.7717/peerj.1367
    Background. Two non-tuberculous mycobacterial strains, UM_3 and UM_11, were isolated from the trunk wash of captive elephants in Malaysia. As they appeared to be identical phenotypes, they were investigated further by conventional and whole genome sequence-based methods of strain differentiation. Methods. Multiphasic investigations on the isolates included species identification with hsp65 PCR-sequencing, conventional biochemical tests, rapid biochemical profiling using API strips and the Biolog Phenotype Microarray analysis, protein profiling with liquid chromatography-mass spectrometry, repetitive sequence-based PCR typing and whole genome sequencing followed by phylogenomic analyses. Results. The isolates were shown to be possibly novel slow-growing schotochromogens with highly similar biological and genotypic characteristics. Both strains have a genome size of 5.2 Mbp, G+C content of 68.8%, one rRNA operon and 52 tRNAs each. They qualified for classification into the same species with their average nucleotide identity of 99.98% and tetranucleotide correlation coefficient of 0.99999. At the subspecies level, both strains showed 98.8% band similarity in the Diversilab automated repetitive sequence-based PCR typing system, 96.2% similarity in protein profiles obtained by liquid chromatography mass spectrometry, and a genomic distance that is close to zero in the phylogenomic tree constructed with conserved orthologs. Detailed epidemiological tracking revealed that the elephants shared a common habitat eight years apart, thus, strengthening the possibility of a clonal relationship between the two strains.
  5. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
  6. Mohd-Radzi NHS, Karuppannan KV, Abdullah-Fauzi NAF, Mohd-Ridwan AR, Othman N, Muhammad Abu Bakar AL, et al.
    Biodivers Data J, 2022;10:e89752.
    PMID: 36761586 DOI: 10.3897/BDJ.10.e89752
    Human-elephant conflict (HEC) contributes to the increasing death of Asian elephants due to road accidents, retaliatory killings and fatal infections from being trapped in snares. Understanding the diet of elephants throughout Peninsular Malaysia remains crucial to improve their habitat quality and reduce scenarios of HEC. DNA metabarcoding allows investigating the diet of animals without direct observation, especially in risky conflict areas. The aim of this study was to determine: i) the diet of wild Asian elephants from HEC areas in Peninsular Malaysia using DNA metabarcoding and ii) the influence of distinct environmental parameters at HEC locations on their feeding patterns. DNA was extracted from 39 faecal samples and pooled into 12 groups representing the different sample locations: Kuala Koh, Kenyir, Ulu Muda, Sira Batu, Kupang-Grik, Bumbun Tahan, Belum-Temengor, Grik, Kampung Pagi, Kampung Kuala Balah, Aring 10 and the National Elephant Conservation Centre, which served as a positive control for this study. DNA amplification and sequencing targeted the ribulose-bisphosphate carboxylase gene using the next-generation sequencing Illumina iSeq100 platform. Overall, we identified 35 orders, 88 families, 196 genera and 237 species of plants in the diet of the Asian elephants at HEC hotspots. Ficus (Moraceae), Curcuma (Zingiberaceae), Phoenix (Arecaceae), Maackia (Fabaceae), Garcinia (Clusiaceae) and Dichapetalum (Dichapetalaceae) were the highly abundant dietary plants. The plants successfully identified in this study could be used by the Department of Wildlife and National Parks (PERHILITAN) to create buffer zones by planting the recommended dietary plants around HEC locations and trails of elephants within Central Forest Spine (CFS) landscape.
  7. Lekko YM, Che-Amat A, Ooi PT, Omar S, Mohd-Hamdan DT, Linazah LS, et al.
    J Vet Med Sci, 2021 Oct 31;83(11):1702-1707.
    PMID: 34544936 DOI: 10.1292/jvms.21-0144
    Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, affecting several domestic animals, wildlife species and humans. The preliminary investigation was aimed to detect antibody against MTBC among indigenous wildlife which are free-ranged wild boar, free-ranged wild macaques and captive Asian elephants in selected areas of Selangor and elephant conservation centre in Pahang, respectively. The results indicate that MTBC serodetection rate in wild boar was 16.7% (7.3-33.5 at 95% confidence interval (CI)) using an in-house ELISA bPPD IgG and 10% (3.5-25.6 at 95% CI) by DPP®VetTB assay, while the wild macaques and Asian elephant were seronegative. The univariate analysis indicates no statistically significant difference in risk factors for sex and age of wild boar but there was a significant positive correlation (P<0.05) between bovine TB in dairy cattle and wild boar seropositivity in the Sepang district.
  8. Abdullah-Fauzi NAF, Karuppannan KV, Mohd-Radzi NHS, Gani M, Mohd-Ridwan AR, Othman N, et al.
    Zool Stud, 2022;61:e60.
    PMID: 37007822 DOI: 10.6620/ZS.2022.61-60
    The world's largest terrestrial mammal, Asian elephants, are known to have enormous feeding needs. Several factors such as season, sex, age, and daily activities influence the amount of food required by an individual. Generally, captive elephants have a limited choice of food on a daily basis compared with that of elephants in the wild. Elephants in captivity are fed according to a prepared feeding schedule, whereas wild elephants are free to choose the type of plants that they consume in their natural habitat. In the past, ecological observations have been widely used to determine the diet of wild elephants. However, the molecular approach has never been carried out. In the present study, we aimed to; 1) identify the plant diet of wild Asian elephants in Taman Negara National Park (TNNP) according to their sex and age using high-throughput DNA metabarcoding; and 2) determine the dietary formulation of captive elephants based on the generated plant metabarcoding database. DNA was extracted from 24 individual fecal samples collected using noninvasive sampling techniques from TNNP and the National Elephant Conservation Centre (NECC) Kuala Gandah. Seven pooled samples from male adult, female adult, male subadult, female subadult, male juvenile, female juvenile, and captive elephants were amplified and sequenced targeting the trnL region (50-150 base pairs). The CLC Genomic Workbench and PAST 4.02 software were used for data analysis. In total, 24 orders, 41 families, 233 genera, and 306 species of plants were successfully detected in the diet of the Asian elephants. The most abundant plant genera consumed were Sporobolus (21.88%), Musa (21.48%), and Ficus (10.80%). Plant variation was lower in samples from male elephants than in those from female elephants. The plant species identified were correlated with the nutrient benefits required by elephants. Adults and subadults consumed more plant species than were consumed by juvenile elephants. However, there was no significant difference between ages and sexes. The findings of this study can be used as guidance by the Department of Wildlife and National Parks for the management of captive elephants, especially in NECC Kuala Gandah.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links