Displaying all 3 publications

Abstract:
Sort:
  1. Reddy, Nidyaletchmy Subba, Rashidah Abdul Rahim, Darah Ibrahim, Kumar, K. Sudesh
    Trop Life Sci Res, 2016;27(11):145-150.
    MyJurnal
    We report on the cloning of the lipase gene from Bacillus licheniformis IBRLCHS2
    and the expression of the recombinant lipase. DNA sequencing analysis of the
    cloned lipase gene showed that it shares 99% identity with the lipase gene from
    B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino
    acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then
    cloned into the pET-15b(+) expression vector and the construct was transformed into
    E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDSPAGE
    where the lipase was found to have a molecular weight of about 23 kDa.
  2. Reddy NS, Navanesan S, Sinniah SK, Wahab NA, Sim KS
    BMC Complement Altern Med, 2012 Aug 17;12:128.
    PMID: 22898370 DOI: 10.1186/1472-6882-12-128
    BACKGROUND: The leaves of Leea indica (Vitaceae), commonly known as 'Huo Tong Shu' in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. The current study reports the outcome of antioxidant and cytotoxic investigation of L. indica leaves. To the best of our knowledge, this is the first report of L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water) for evaluation of total phenolic content, antioxidant effect and cytotoxic activity against colon cancer cell lines.

    METHODS: In the present study, L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water) were firstly prepared prior to phenolic content, antioxidant effect and cytotoxic activity assessment. Folin-Ciocalteau's method was used for the measurement of total phenolic content of the extracts. The antioxidant activity was measured by employing three different established testing systems, such as scavenging activity on DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals, reducing power assay and SOD (superoxide dismutase) activity assay. The cytotoxic activity of the extracts were evaluated against three colon cancer cell lines with varying molecular characteristics (HT-29, HCT-15 and HCT-116) by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay.

    RESULTS: The total phenolic content and antioxidant capabilities differed significantly among the L. indica leaf extracts. A strong correlation between total phenolic content and antioxidant properties was found, indicating that phenolic compounds are the major contributor to the antioxidant properties of these extracts. Among the crude ethanol and its fractionated extracts, fractionated water extract showed significantly the highest total phenolic content and strongest antioxidant effect in all the antioxidant testing systems employed in this study. All the four extracts exert no damage to the selected colon cancer cells.

    CONCLUSIONS: The data obtained in these testing systems clearly establish the antioxidant potency of the fractionated water extract of L. indica leaves. Additional studies should be carried out to isolate and identify the bioactive compounds in the fractionated water extract, in order to provide more convincing evidence.

  3. Khazaal Kadhim Almansoori A, Reddy NS, Abdulfattah M, Ismail SS, Abdul Rahim R
    PLoS One, 2024;19(12):e0314556.
    PMID: 39689112 DOI: 10.1371/journal.pone.0314556
    This study focuses on a novel lipase from Bacillus licheniformis IBRL-CHS2. The lipase gene was cloned into the pGEM-T Easy vector, and its sequences were registered in GenBank (KU984433 and AOT80658). It was identified as a member of the bacterial lipase subfamily 1.4. The pCold I vector and E. coli BL21 (DE3) host were utilized for expression, with the best results obtained by removing the enzyme's signal peptide. Optimal conditions were found to be 15°C for 24 h, using 0.2 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG). The His-tagged lipase was purified 13-fold with a 68% recovery and a specific activity of 331.3 U/mg using affinity purification. The lipase demonstrated optimal activity at 35°C and pH 7. It remained stable after 24 h in 25% (v/v) organic solvents such as isooctane, n-hexane, dimethyl sulfoxide (DMSO), and methanol, which enhanced its activity. Chloroform and diethyl ether inhibited the lipase. The enzyme exhibited the highest affinity for p-nitrophenol laurate (C12:0) with a Km of 0.36 mM and a Vmax of 357 μmol min-1 mg-1. Among natural oils, it performed best with coconut oil and worst with olive oil. The lipase was stable in the presence of 1 mM and 5 mM Ca2⁺, K⁺, Na⁺, Mg2⁺, and Ba2⁺, but its activity decreased with Zn2⁺ and Al3⁺. Non-ionic surfactants like Triton X-100, Nonidet P40, Tween 20, and Tween 40 boosted activity, while Sodium Dodecyl Sulfate (SDS) inhibited it. This lipase's unique properties, particularly its stability in organic solvents, make it suitable for applications in organic synthesis and various industries.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links