RESULTS: An 11 item scale, out of the 17 items, was identified that conformed to the assumptions of a Mokken Scale. All the items in the scale were identified as strong items (Hi > .5). Two PCA measures of SEP were developed as a point of contrast. One PCA measure was developed using all 17 available asset items, the other used the reduced set of 11 items identified in the Mokken scale analaysis. The Mokken Scale measure of SEP and the 17 item PCA measure had a very high correlation (r = .98), and they both correlated moderately with total household expenditure: r = .59 and r = .57 respectively. In contrast the 11 item PCA measure correlated moderately with the Mokken scale (r = .68), and weakly with the total household expenditure (r = .18).
CONCLUSION: The Mokken scale measure of household SEP performed at least as well as PCA, and outperformed the PCA measure developed with the 11 items used in the Mokken scale. Unlike PCA, Mokken scaling carries no assumptions about the underlying shape of the distribution of the data, and can be used simultaneous to order household SEP and items. The approach, however, has not been tested with data from other countries and remains an interesting, but under researched approach.
METHODS: Data from the World Health Survey conducted in 2002-2004, across 70 low-, middle- and high-income countries was used. Participants aged 18 years and over were selected using multistage, stratified cluster sampling. BMI was used as outcome variable. The potential determinants of individual-level BMI were participants' sex, age, marital-status, education, occupation, household-wealth and location(rural/urban) at the individual-level. The country-level factors used were average national income (GNI-PPP) and income inequality (Gini-index). A two-level random-intercepts and fixed-slopes model structure with individuals nested within countries was fitted, treating BMI as a continuous outcome.
RESULTS: The weighted mean BMI and standard-error of the 206,266 people from 70-countries was 23.90 (4.84). All the low-income countries were below the 25.0 mean BMI level and most of the high-income countries were above. All wealthier quintiles of household-wealth had higher scores in BMI than lowest quintile. Each USD10000 increase in GNI-PPP was associated with a 0.4 unit increase in BMI. The Gini-index was not associated with BMI. All these variables explained 28.1% of country-level, 4.9% of individual-level and 7.7% of total variance in BMI. The cross-level interaction effect between GNI-PPP and household-wealth was significant. BMI increased as the GNI-PPP increased in first four quintiles of household-wealth. However, the BMI of the wealthiest people decreased as the GNI-PPP increased.
CONCLUSION: Both individual-level and country-level factors made an independent contribution to the BMI of the people. Household-wealth and national-income had significant interaction effects.
METHODS: Behavioural Risk Factors Surveillance System data were used to estimate the weight the US population needed to lose to achieve a BMI