The acrylated palm oil (APO) nanoparticle is a potential product that can be used as carriers in
medical field. The main focus of the present study was to study the potential of the APO
nanoparticles for used in a controlled drug delivery system. The microemulsion system is used as a
medium to incorporate an active substance such as Thymoquinone (TQ) into the APO polymeric
micelle and then the radiation technique is used as a tool for the synthesis of TQ-loaded APO
nanoparticle. The nano-size TQ-loaded APO particles resulted the particle size of less than 150 nm
with spherical in shape. The TQ release profile was carried out in potassium buffer saline (PBS)
solutions (pH 7.4) at 37
oC. And, the zero-order model has been used to determine the mechanism
of the drug release from the corresponding nanoparticles, respectively. The TQ release was found
to be sustained and controlled in pH 7.4. At pH 7.4, the release of TQ followed the zero-order
model. The in-vitro drug release study showed a good prospect of the APO nanoparticle on being a
potential drug carrier as there are toxic against colon cancer cells and not toxic towards normal
cells. This suggested that the APO product produce using this radiation technique can be
developed into different type of carrier systems for controlled drug release applications.
Various palm oil (RBD Palm Olein) based urethane acrylate prepolymers (UPs) having different structures and molecular weights were synthesised from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following established synthesis procedures described elsewhere. The products (UPs) were compared with each other in terms of their molecular weights (MW), viscosities and UV curing performances of pressure sensitive adhesives (PSA) UP based formulations. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers tend to determine the molecular weights and hence viscosities of the final products of urethane acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the coatings and adhesive properties of UV curable UP based PSA.
In recent years, there are growing trends in using palm oil as raw materials in radiation curable resins production. In this study, the acrylated palm oil resins i.e. the EPOLA (epoxidized palm oil acrylate) and the POBUA (palm oil based urethane acrylate) were synthesized using two different systems, i.e. the 25 liter pilot scale reactor synthesis system and the 2 liter (L) laboratory scale reactor synthesis system through chemical processes known as acrylation and isocyanation. In this
paper, the property of the acrylated resins which were produced by these two systems were evaluated and compared between each other. Their properties were characterized using the Fourier transform infrared (FTIR) spectrophotometer for functional group identification; the gel permeation chromatography (GPC) for molecular weight (Mw) determination, the Brookfield viscometer for viscosity measurements, the acid values (AV) and the oxirane oxygen contents (OOC) analysis. As a result, the production process for both the 2 L and 25 L reactor system were found to be time consuming and the main advantages for the 25 L reactor was its higher productivity as compared with the 2 L reactor system with the same synthesis process parameters i.e. the temperatures and the experimental methods. Besides that, the 25 L reactor synthesis
process was found to be safe, easy to control and served unpolluted process to the environments. The final products, the acrylated palm oil resins were formulated into ultraviolet (UV) curable compounds before subjecting them under UVirradiation. As a result, the UV-curable palm oil resins showed potential uses as pressure sensitive adhesives, printing inks including overprint varnishes (OPV) and coatings.