Displaying all 5 publications

Abstract:
Sort:
  1. Abdullah AH, Ridha S, Mohshim DF, Maoinser MA
    RSC Adv, 2024 Mar 26;14(15):10431-10444.
    PMID: 38572346 DOI: 10.1039/d3ra07874d
    The modern oil and gas industry, driven by a surging global energy demand, faces the challenge of exploring deeper geological formations. Ensuring the robust performance of drilling fluids under harsh wellbore conditions is paramount, with elevated temperatures and salt contamination recognized as detrimental factors affecting the rheological and filtration loss properties of drilling fluids. We successfully synthesized a polyethyleneimine-grafted graphene oxide nanocomposite (PEI-GO), and its functional groups formation and thermal stability were verified through Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). Our findings demonstrated a significant improvement in the plastic viscosity and yield point of the base drilling fluid with the addition of PEI-GO. The inclusion of 0.3 wt% PEI-GO outperformed the base drilling fluid at 160 °C, improving the yield point/plastic viscosity (YP/PV) value and reducing filtration loss volume by 42% and 67%, respectively. The Herschel-Bulkley model emerged as the superior choice for characterizing rheological behavior. PEI-GO exhibited compatibility with high-salt formations, maintaining satisfactory filtration volumes even when subjected to sodium chloride (NaCl) and calcium chloride (CaCl2) contamination concentrations of up to 20 and 10 wt%, respectively. The remarkable rheological and filtration properties of PEI-GO are attributed to its electrostatic interactions with clay particles through hydrogen and ionic bonding. These interactions lead to pore plugging in the filter cake, effectively preventing water infiltration and reducing filtration loss volume. This study emphasizes the potential of PEI-GO in water-based drilling fluids, particularly in high-temperature and salt-contaminated environments.
  2. Ali I, Ahmad M, Ridha S, Iferobia CC, Lashari N
    RSC Adv, 2023 Nov 07;13(47):32904-32917.
    PMID: 38025871 DOI: 10.1039/d3ra06008j
    In the context of deep well drilling, the addition of functionalized additives into mud systems becomes imperative due to the adverse impact of elevated borehole temperatures and salts on conventional additives, causing them to compromise their intrinsic functionalities. Numerous biomaterials have undergone modifications and have been evaluated in drilling muds. However, the addition of dually modified tapioca starch in bentonite-free mud systems remains a notable gap within the existing literature. This study aims to examine the performance of dually modified carboxymethyl irradiated tapioca starch (CMITS) under high temperature and salt-containing conditions employing central composite design approach; the study evaluates the modified starch's impact on mud rheology, thermal stability, and salt resistance. The findings indicated that higher DS (0.66) and CMITS concentrations (8 ppb) improved plastic viscosity (PV), yield point (YP) and gel strength (GS), while increased salt and temperature decreased it, demonstrating the complex interplay of these factors on mud rheology. The developed empirical models suggested that DS 0.66 starch addition enhanced rheology, especially at elevated temperatures, demonstrating improved borehole cleaning potential, supported by quadratic model performance indicators in line with American Petroleum Institute (API) ranges. The optimized samples showed a non-Newtonian behavior, and Power-law model fitting yields promising results for improved cuttings transportation with starch additives.
  3. Amadi AH, Mohyaldinn M, Abduljabbar A, Ridha S, Avilala P, Owolabi GT
    Materials (Basel), 2024 Jan 05;17(2).
    PMID: 38255448 DOI: 10.3390/ma17020281
    This research explores discrete element method analysis to investigate the wear of NiTi Sand Screens in comparison to traditional materials. The study utilized Altair EDEM v2022.2 software and employed Oka and Archard models to simulate the wear behavior of Nitinol, a well-established Shape Memory Alloy (SMA). The mechanical properties considered include Poisson's ratio, solid density, shear modulus, and Young modulus. Results indicate significantly higher wear values and deformations with the Oka model compared to negligible wear with the Archard model. The Oka model's emphasis on impact as the primary wear mechanism, supported by high normal cumulative energy, better represents sand screen wear phenomena. Additionally, this study indicates that factors such as particle size distribution and normal and tangential cumulative contact energy hold potential as predictors of wear response and characteristics. The Oka model demonstrated that NiTi exhibited reduced wear losses compared to SUS630 and Cr-Mn white cast iron, both of which are recognized for their high toughness when subjected to an impact load. Experimental analysis validated the simulation findings with morphological and graphical erosion plots. The limitation of observing the shape memory effect through DEM (discrete element method) simulation was acknowledged. Recommendations include characterizing post-wear microstructural changes, exploring the influence of temperature on wear behavior, and further research to refine wear models and understand SMA sand screen responses.
  4. Soni A, Das PK, Yusuf M, Ridha S, Kamyab H, Alam MA, et al.
    Chemosphere, 2023 May;323:138233.
    PMID: 36863626 DOI: 10.1016/j.chemosphere.2023.138233
    The diverse nature of polymers with attractive properties has replaced the conventional materials with polymeric composites. The present study was sought to evaluate the wear performance of thermoplastic-based composites under the conditions of different loads and sliding speeds. In the present study, nine different composites were developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polyethylene terephthalate (PET) with partial sand replacements i.e., 0, 30, 40, and 50 wt%. The abrasive wear was evaluated as per the ASTM G65 standard test for abrasive wear through a dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N) and sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The optimum density and compressive strength were obtained to be 2.0555 g/cm3 and 46.20 N/mm2, respectively for the composites HDPE60 and HDPE50 respectively. The minimum value of abrasive wear were found to 0.02498, 0.03430, 0.03095, 0.09020 and 0.03267 (cm3) under the considered loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), respectively. Moreover, the composites LDPE50, LDPE100, LDPE100, LDPE50PET20 and LDPE60 showed a minimum abrasive wear of 0.03267, 0.05949, 0.05949, 0.03095 and 0.10292 at the sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s), respectively. The wear response varied non-linearly with the conditions of loads and sliding speeds. Micro-cutting, plastic deformations, fiber peelings, etc. were included as the possible wear mechanism. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors through the morphological analyses of the worn-out surfaces were provided.
  5. Maqsood K, Ali A, Ilyas SU, Garg S, Danish M, Abdulrahman A, et al.
    Chemosphere, 2022 Jan;286(Pt 2):131690.
    PMID: 34352553 DOI: 10.1016/j.chemosphere.2021.131690
    The experimental determination of thermophysical properties of nanofluid (NF) is time-consuming and costly, leading to the use of soft computing methods such as response surface methodology (RSM) and artificial neural network (ANN) to estimate these properties. The present study involves modelling and optimization of thermal conductivity and viscosity of NF, which comprises multi-walled carbon nanotubes (MWCNTs) and thermal oil. The modelling is performed to predict the thermal conductivity and viscosity of NF by using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Both models were tested and validated, which showed promising results. In addition, a detailed optimization study was conducted to investigate the optimum thermal conductivity and viscosity by varying temperature and NF weight per cent. Four case studies were explored using different objective functions based on NF application in various industries. The first case study aimed to maximize thermal conductivity (0.15985 W/m oC) while minimizing viscosity (0.03501 Pa s) obtained at 57.86 °C and 0.85 NF wt%. The goal of the second case study was to minimize thermal conductivity (0.13949 W/m °C) and viscosity (0.02526 Pa s) obtained at 55.88 °C and 0.15 NF wt%. The third case study targeted maximizing thermal conductivity (0.15797 W/m °C) and viscosity (0.07611 Pa s), and the optimum temperature and NF wt% were 30.64 °C and 0.0.85,' respectively. The last case study explored the minimum thermal conductivity (0.13735) and maximum viscosity (0.05263 Pa s) obtained at 30.64 °C and 0.15 NF wt%.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links