Displaying all 3 publications

Abstract:
Sort:
  1. Khanis NH, Ritikos R, Ahmad Kamal SA, Abdul Rahman S
    Materials (Basel), 2017 Jan 24;10(2).
    PMID: 28772460 DOI: 10.3390/ma10020102
    Nanostructured hydrogenated carbon nitride (CNx:H) thin films were synthesized on a crystal silicon substrate at low deposition temperature by radio-frequency plasma-enhanced chemical vapor deposition (PECVD). Methane and nitrogen were the precursor gases used in this deposition process. The effects of N₂ to the total gas flow rate ratio on the formation of CNx:H nanostructures were investigated. Field-emission scanning electron microscopy (FESEM), Auger electron spectroscopy (AES), Raman scattering, and Fourier transform of infrared spectroscopies (FTIR) were used to characterize the films. The atomic nitrogen to carbon ratio and sp² bonds in the film structure showed a strong influence on its growth rate, and its overall structure is strongly influenced by even small changes in the N₂:(N₂ + CH₄) ratio. The formation of fibrous CNx:H nanorod structures occurs at ratios of 0.7 and 0.75, which also shows improved surface hydrophobic characteristic. Analysis showed that significant presence of isonitrile bonds in a more ordered film structure were important criteria contributing to the formation of vertically-aligned nanorods. The hydrophobicity of the CNx:H surface improved with the enhancement in the vertical alignment and uniformity in the distribution of the fibrous nanorod structures.
  2. Banihashemian SM, Periasamy V, Mohammadi SM, Ritikos R, Rahman SA
    Molecules, 2013 Sep 25;18(10):11797-808.
    PMID: 24071986 DOI: 10.3390/molecules181011797
    UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA) and cytosine-guanine 100 mer (CG-100 DNA) indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.
  3. Khatir NM, Banihashemian SM, Periasamy V, Ritikos R, Majid WHA, Rahman SA
    Sensors (Basel), 2012;12(3):3578-3586.
    PMID: 22737025 DOI: 10.3390/s120303578
    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links