Displaying all 8 publications

Abstract:
Sort:
  1. Hii YL, Zaki RA, Aghamohammadi N, Rocklöv J
    Curr Environ Health Rep, 2016 Mar;3(1):81-90.
    PMID: 26931438 DOI: 10.1007/s40572-016-0078-z
    Dengue is a climate-sensitive infectious disease. Climate-based dengue early warning may be a simple, low-cost, and effective tool for enhancing surveillance and control. Scientific studies on climate and dengue in local context form the basis for advancing the development of a climate-based early warning system. This study aims to review the current status of scientific studies in climate and dengue and the prospect or challenges of such research on a climate-based dengue early warning system in a dengue-endemic country, taking Malaysia as a case study.
  2. Hussain-Alkhateeb L, Kroeger A, Olliaro P, Rocklöv J, Sewe MO, Tejeda G, et al.
    PLoS One, 2018;13(5):e0196811.
    PMID: 29727447 DOI: 10.1371/journal.pone.0196811
    BACKGROUND: Dengue outbreaks are increasing in frequency over space and time, affecting people's health and burdening resource-constrained health systems. The ability to detect early emerging outbreaks is key to mounting an effective response. The early warning and response system (EWARS) is a toolkit that provides countries with early-warning systems for efficient and cost-effective local responses. EWARS uses outbreak and alarm indicators to derive prediction models that can be used prospectively to predict a forthcoming dengue outbreak at district level.

    METHODS: We report on the development of the EWARS tool, based on users' recommendations into a convenient, user-friendly and reliable software aided by a user's workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico.

    FINDINGS: 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion.

    CONCLUSION: EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities.

  3. Wilder-Smith A, Tissera H, AbuBakar S, Kittayapong P, Logan J, Neumayr A, et al.
    Glob Health Action, 2018;11(1):1549930.
    PMID: 30560735 DOI: 10.1080/16549716.2018.1549930
    BACKGROUND: Dengue fever persists as a major global disease burden, and may increase as a consequence of climate change. Along with other measures, research actions to improve diagnosis, surveillance, prevention, and predictive models are highly relevant. The European Commission funded the DengueTools consortium to lead a major initiative in these areas, and this review synthesises the outputs and findings of this work conducted from 2011 to 2016. Research areas: DengueTools organised its work into three research areas, namely [1] Early warning and surveillance systems; [2] Strategies to prevent dengue in children; and [3] Predictive models for the global spread of dengue. Research area 1 focused on case-studies undertaken in Sri Lanka, including developing laboratory-based sentinel surveillance, evaluating economic impact, identifying drivers of transmission intensity, evaluating outbreak prediction capacity and developing diagnostic capacity. Research area 2 addressed preventing dengue transmission in school children, with case-studies undertaken in Thailand. Insecticide-treated school uniforms represented an intriguing potential approach, with some encouraging results, but which were overshadowed by a lack of persistence of insecticide on the uniforms with repeated washing. Research area 3 evaluated potential global spread of dengue, particularly into dengue-naïve areas such as Europe. The role of international travel, changing boundaries of vectors, developing models of vectorial capacity under different climate change scenarios and strategies for vector control in outbreaks was all evaluated.

    CONCLUDING REMARKS: DengueTools was able to make significant advances in methods for understanding and controlling dengue transmission in a range of settings. These will have implications for public health agendas to counteract dengue, including vaccination programmes.

    OUTLOOK: Towards the end of the DengueTools project, Zika virus emerged as an unexpected epidemic in the central and southern America. Given the similarities between the dengue and Zika viruses, with vectors in common, some of the DengueTools thinking translated readily into the Zika situation.

  4. Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Beagley J, Belesova K, et al.
    Lancet, 2021 Jan 09;397(10269):129-170.
    PMID: 33278353 DOI: 10.1016/S0140-6736(20)32290-X
    For the Chinese, French, German, and Spanish translations of the abstract see Supplementary Materials section.
  5. Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al.
    Lancet, 2021 Oct 30;398(10311):1619-1662.
    PMID: 34687662 DOI: 10.1016/S0140-6736(21)01787-6
  6. Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, et al.
    Lancet, 2022 Nov 05;400(10363):1619-1654.
    PMID: 36306815 DOI: 10.1016/S0140-6736(22)01540-9
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links