Displaying all 8 publications

Abstract:
Sort:
  1. Hassim N, Markom M, Rosli MI, Harun S
    Sci Rep, 2021 08 04;11(1):15818.
    PMID: 34349152 DOI: 10.1038/s41598-021-95222-0
    Scaling-up supercritical fluid extraction (SFE) for the extraction of bioactive compounds from herbal plants is challenging, especially with the presence of alcohol-water as co-solvent. Hence, the main objective of this study is to validate the scale-up criteria of SFE process for Phyllanthus niruri (P. niruri), and analyse the extract safety and profitability process at the industrial scale. The study was performed by using supercritical carbon dioxide (SC-CO2) with ethanol-water co-solvent at two operating conditions (L1: 200 bar, 60 °C and L2: 262 bar, 80 °C). The solvent-to-feed ratio (S/F) scale-up validation experiments were conducted at both operating conditions with feed mass capacity of 0.5 kg. The extraction yields and overall extraction curves obtained were almost similar to the predicted ones, with error of 5.13% and 14.2%, respectively. The safety of scale-up extract was evaluated by using a toxicity test against zebrafish embryo (FETT). The extract exhibited a low toxic effect with the LD50 value of 505.71 µg/mL. The economic evaluation using a detailed profitability analysis showed that the SFE of P. niruri was an economically feasible process, as it disclosed the encouraging values of return on investment (ROI) and net present values (NPV) for all scale-up capacities.
  2. Othman N, Kamarudin SK, Takriff MS, Rosli MI, Engku Chik EM, Meor Adnan MA
    ScientificWorldJournal, 2014;2014:619474.
    PMID: 25170524 DOI: 10.1155/2014/619474
    This paper presents the preliminary steps required for conducting experiments to obtain the optimal operating conditions of a hybrid impeller mixer and to determine the residence time distribution (RTD) using computational fluid dynamics (CFD). In this paper, impeller speed and clearance parameters are examined. The hybrid impeller mixer consists of a single Rushton turbine mounted above a single pitched blade turbine (PBT). Four impeller speeds, 50, 100, 150, and 200 rpm, and four impeller clearances, 25, 50, 75, and 100 mm, were the operation variables used in this study. CFD was utilized to initially screen the parameter ranges to reduce the number of actual experiments needed. Afterward, the residence time distribution (RTD) was determined using the respective parameters. Finally, the Fluent-predicted RTD and the experimentally measured RTD were compared. The CFD investigations revealed that an impeller speed of 50 rpm and an impeller clearance of 25 mm were not viable for experimental investigations and were thus eliminated from further analyses. The determination of RTD using a k-ε turbulence model was performed using CFD techniques. The multiple reference frame (MRF) was implemented and a steady state was initially achieved followed by a transient condition for RTD determination.
  3. Othman N, Kamarudin SK, Takriff MS, Rosli MI, Engku Chik EM, Adnan MA
    ScientificWorldJournal, 2014;2014:242658.
    PMID: 24741344 DOI: 10.1155/2014/242658
    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization.
  4. Noreen N, Hooi WY, Baradaran A, Rosfarizan M, Sieo CC, Rosli MI, et al.
    Microb Cell Fact, 2011;10:28.
    PMID: 21518457 DOI: 10.1186/1475-2859-10-28
    Many plasmid-harbouring strains of Lactococcus lactis have been isolated from milk and other sources. Plasmids of Lactococcus have been shown to harbour antibiotic resistance genes and those that express some important proteins. The generally regarded as safe (GRAS) status of L. lactis also makes it an attractive host for the production of proteins that are beneficial in numerous applications such as the production of biopharmaceutical and nutraceutical. In the present work, strains of L. lactis were isolated from cow's milk, plasmids were isolated and characterised and one of the strains was identified as a potential new lactococcal host for the expression of heterologous proteins.
  5. Subramaniam M, Baradaran A, Rosli MI, Rosfarizan M, Khatijah Y, Raha AR
    J. Mol. Microbiol. Biotechnol., 2012;22(6):361-72.
    PMID: 23295307 DOI: 10.1159/000343921
    Cyclodextrin glucanotransferase (CGTase) is an extracellular enzyme which catalyzes the formation of cyclodextrin from starch. The production of CGTase using lactic acid bacterium is an attractive alternative and safer strategy to produce CGTase. In this study, we report the construction of genetically modified Lactococcus lactis strains harboring plasmids that secrete the Bacillus sp. G1 β-CGTase, with the aid of the signal peptides (SPs) SPK1, USP45 and native SP (NSP). Three constructed vectors, pNZ:NSP:CGT, pNZ:USP:CGT and pNZ:SPK1:CGT, were developed in this study. Each vector harbored a different SP fused to the CGTase. The formation of halo zones on starch plates indicated the production and secretion of β-CGTase by the recombinants. The expression of this enzyme is shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. A band size of ∼75 kDa corresponding to β-CGTase is identified in the intracellular and the extracellular environments of the host after medium modification. The replacement of glucose by starch in the medium was shown to induce β-CGTase production in L. lactis. Although β-CGTase production is comparatively low in NZ:SPK1:CGT, the SP SPK1 was shown to have higher secretion efficiency compared to the other SPs used in this study.
  6. Lim BH, Majlan EH, Daud WRW, Rosli MI, Husaini T
    Heliyon, 2018 Oct;4(10):e00845.
    PMID: 30338304 DOI: 10.1016/j.heliyon.2018.e00845
    The flow distribution of a proton exchange membrane fuel cell within a manifold plays an important role on its performance. This study presents a numerical analysis of the flow distribution behavior within different manifold configurations. A two-dimensional model with 75 cells was employed to study the flow behavior. The variation in the stoichiometry and number of cells was also studied. Three different flow configurations were considered with different numbers of flow inlets and outlets. The flow characteristics, such as the pressure and velocity variations in the manifold and cells, were measured to determine the effects of the different flow configurations. The results indicated that the double inlet/outlet configuration had the best flow distribution when using 75 cells. Moreover, increasing the stoichiometry resulted in a better flow distribution to the cells in a stack.
  7. Ahmad KN, Anuar SA, Wan Isahak WNR, Rosli MI, Yarmo MA
    ACS Appl Mater Interfaces, 2020 Feb 12;12(6):7102-7113.
    PMID: 31968163 DOI: 10.1021/acsami.9b18984
    Nickel (Ni) catalysts supported on mesoporous graphitic carbon nitride (mpg-C3N4) were synthesized through simple impregnation method with air and nitrogen calcination atmosphere for CO methanation. The effects of pretreatment gas on catalyst structure, surface characteristics, and Ni species reducibility were investigated. Under air-calcination condition, the increase in specific surface area of the catalyst can be ascribed to the creation of mesopores and exfoliation of bulk mpg-C3N4 to form thin sheets. However, excessive Ni content on the catalyst accelerated the decomposition of the mpg-C3N4 support during calcination. The catalysts calcined in nitrogen showed lower surface area and fewer number of pores compared to air-treatment. The Ni/mpg-C3N4 catalyst calcined in air with Ni loading 10% exhibited enhanced medium-temperature activity for CO methanation with 79.7% CO conversion and 73.9% CH4 selectivity. This finding can be explained by the formation of mpg-C3N4 thin sheets, which increased the number of catalyst active sites. The CO methanation performance of Ni/mpg-C3N4 catalysts calcined in air was superior to those calcined in nitrogen. Interestingly, CO2 formed by water-gas shift reaction at 320 °C also contributed to the overall methane formation through CO2 methanation. Therefore, mpg-C3N4 thin sheets can be an interesting support for nickel catalyst for CO
    x
    methanation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links