Displaying all 6 publications

Abstract:
Sort:
  1. Husham A, Hazim Alkawaz M, Saba T, Rehman A, Saleh Alghamdi J
    Microsc Res Tech, 2016 Oct;79(10):993-997.
    PMID: 27476682 DOI: 10.1002/jemt.22733
    Segmentation of objects from a noisy and complex image is still a challenging task that needs to be addressed. This article proposed a new method to detect and segment nuclei to determine whether they are malignant or not (determination of the region of interest, noise removal, enhance the image, candidate detection is employed on the centroid transform to evaluate the centroid of each object, the level set [LS] is applied to segment the nuclei). The proposed method consists of three main stages: preprocessing, seed detection, and segmentation. Preprocessing stage involves the preparation of the image conditions to ensure that they meet the segmentation requirements. Seed detection detects the seed point to be used in the segmentation stage, which refers to the process of segmenting the nuclei using the LS method. In this research work, 58 H&E breast cancer images from the UCSB Bio-Segmentation Benchmark dataset are evaluated. The proposed method reveals the high performance and accuracy in comparison to the techniques reported in literature. The experimental results are also harmonized with the ground truth images.
  2. Jamal A, Hazim Alkawaz M, Rehman A, Saba T
    Microsc Res Tech, 2017 Jul;80(7):799-811.
    PMID: 28294460 DOI: 10.1002/jemt.22867
    With an increase in the advancement of digital imaging and computing power, computationally intelligent technologies are in high demand to be used in ophthalmology cure and treatment. In current research, Retina Image Analysis (RIA) is developed for optometrist at Eye Care Center in Management and Science University. This research aims to analyze the retina through vessel detection. The RIA assists in the analysis of the retinal images and specialists are served with various options like saving, processing and analyzing retinal images through its advanced interface layout. Additionally, RIA assists in the selection process of vessel segment; processing these vessels by calculating its diameter, standard deviation, length, and displaying detected vessel on the retina. The Agile Unified Process is adopted as the methodology in developing this research. To conclude, Retina Image Analysis might help the optometrist to get better understanding in analyzing the patient's retina. Finally, the Retina Image Analysis procedure is developed using MATLAB (R2011b). Promising results are attained that are comparable in the state of art.
  3. Al-Dabbagh MM, Salim N, Rehman A, Alkawaz MH, Saba T, Al-Rodhaan M, et al.
    ScientificWorldJournal, 2014;2014:612787.
    PMID: 25309952 DOI: 10.1155/2014/612787
    This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.
  4. Abbas N, Mohamad D, Abdullah AH, Saba T, Al-Rodhaan M, Al-Dhelaan A
    Pak J Pharm Sci, 2015 Sep;28(5):1801-6.
    PMID: 26408877
    The Leukocytes are differentiated from each other on the basis of their nuclei, demanded in many Medical studies, especially in all types of Leukemia by the Hematologists to note the disorder caused by specific type of Leukocyte. Leukemia is a life threatening disease. The work for diagnosing is manually carried out by the Hematologists involving much labor, time and human errors. The problems mentioned are easily addressed through computer vision techniques, but still accuracy and efficiency are demanded in terms of the basic and challenging step segmentation of Leukocyte's nuclei. The underlying study proposed better method in terms of accuracy and efficiency by designing a dynamic convolution filter for boosting low intensity values in the separated green channel of an RGB image and suppressing the high values in the same channel. The high values in the green channel become 255 (background) while the nuclei always have low values in the green channel and thus clearly appear as foreground. The proposed technique is tested on 365 images achieving an overall accuracy of 95.89%, while improving the efficiency by 10%. The proposed technique achieved its targets in a realistic way by improving the accuracy as well as the efficiency and both are highly required in the area.
  5. Waheed SR, Alkawaz MH, Rehman A, Almazyad AS, Saba T
    Microsc Res Tech, 2016 May;79(5):431-7.
    PMID: 26918523 DOI: 10.1002/jemt.22646
    Image fusion process consolidates data and information from various images of same sight into a solitary image. Each of the source images might speak to a fractional perspective of the scene, and contains both "pertinent" and "immaterial" information. In this study, a new image fusion method is proposed utilizing the Discrete Cosine Transform (DCT) to join the source image into a solitary minimized image containing more exact depiction of the sight than any of the individual source images. In addition, the fused image comes out with most ideal quality image without bending appearance or loss of data. DCT algorithm is considered efficient in image fusion. The proposed scheme is performed in five steps: (1) RGB colour image (input image) is split into three channels R, G, and B for source images. (2) DCT algorithm is applied to each channel (R, G, and B). (3) The variance values are computed for the corresponding 8 × 8 blocks of each channel. (4) Each block of R of source images is compared with each other based on the variance value and then the block with maximum variance value is selected to be the block in the new image. This process is repeated for all channels of source images. (5) Inverse discrete cosine transform is applied on each fused channel to convert coefficient values to pixel values, and then combined all the channels to generate the fused image. The proposed technique can potentially solve the problem of unwanted side effects such as blurring or blocking artifacts by reducing the quality of the subsequent image in image fusion process. The proposed approach is evaluated using three measurement units: the average of Q(abf) , standard deviation, and peak Signal Noise Rate. The experimental results of this proposed technique have shown good results as compared with older techniques. Microsc. Res. Tech. 79:431-437, 2016. © 2016 Wiley Periodicals, Inc.
  6. Safdar A, Khan MA, Shah JH, Sharif M, Saba T, Rehman A, et al.
    Microsc Res Tech, 2019 Sep;82(9):1542-1556.
    PMID: 31209970 DOI: 10.1002/jemt.23320
    Plant diseases are accountable for economic losses in an agricultural country. The manual process of plant diseases diagnosis is a key challenge from last one decade; therefore, researchers in this area introduced automated systems. In this research work, automated system is proposed for citrus fruit diseases recognition using computer vision technique. The proposed method incorporates five fundamental steps such as preprocessing, disease segmentation, feature extraction and reduction, fusion, and classification. The noise is being removed followed by a contrast stretching procedure in the very first phase. Later, watershed method is applied to excerpt the infectious regions. The shape, texture, and color features are subsequently computed from these infection regions. In the fourth step, reduced features are fused using serial-based approach followed by a final step of classification using multiclass support vector machine. For dimensionality reduction, principal component analysis is utilized, which is a statistical procedure that enforces an orthogonal transformation on a set of observations. Three different image data sets (Citrus Image Gallery, Plant Village, and self-collected) are combined in this research to achieving a classification accuracy of 95.5%. From the stats, it is quite clear that our proposed method outperforms several existing methods with greater precision and accuracy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links