Displaying all 8 publications

Abstract:
Sort:
  1. Mohan Viswanathan P, Sabarathinam C, Karuppannan S, Gopalakrishnan G
    Environ Dev Sustain, 2022;24(6):8856-8882.
    PMID: 34393622 DOI: 10.1007/s10668-021-01719-z
    This study aims to explore the state-wise assessment of SARS-CoV-2 (COVID-19) pandemic spread in Malaysia with focus on influence of meteorological parameters and air quality. In this study, state-wise COVID-19 data, meteorological parameters and air quality index (AQI) were collected from March 13 to April 30, 2020, which encompass three movement control order (MCO) periods in the country. Overall, total infected cases were observed to be higher in MCO phase 1 and 2 and significantly reduced in MCO phase 3. Due to the variation in the spatial interval of population density and individual immunity, the relationship of these parameters to pandemic spread could not be achieved. The study infers that temperature (T) between 23 and 25 °C and relative humidity (RH) (70-80%) triggered the pandemic spread by increase in the infected cases in northern and central Peninsular Malaysia. Selangor, WP Kuala Lumpur and WP Putrajaya show significantly high infected cases and a definite trend was not observed with respect to a particular meteorological factor. It is identified that high precipitation (PPT), RH and good air quality have reduced the spread in East Malaysia. A negative correlation of T and AQI and positive correlation of RH with total infected cases were found during MCO phase 3. Principal component analysis (PCA) indicated that T, RH, PPT, dew point (DP) and AQI are the main controlling factors for the spread across the country apart from social distancing. Vulnerability zones were identified based on the spatial analysis of T, RH, PPT and AQI with reference to total infected cases. Based on time series analysis, it was determined that higher RH and T in Peninsular Malaysia and high amount of PPT, RH and good air quality in East Malaysia have controlled the spreading during MCO phase 3. The predominance of D614 mutant was observed prior to March and decreases at the end of March, coinciding with the fluctuation of meteorological factors and air quality. The outcome of this study gives a general awareness to the public on COVID-19 and the influence of meteorological factors. It will also help the policymakers to enhance the management plans against the pandemic spreading apart from social distancing in the next wave of COVID-19.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10668-021-01719-z.

  2. Mishra A, Mohan Viswanathan P, Ramasamy N, Panchatcharam S, Sabarathinam C
    Environ Sci Pollut Res Int, 2023 Oct;30(46):103225-103243.
    PMID: 37688695 DOI: 10.1007/s11356-023-29582-7
    The current study aims to investigate the spatiotemporal distribution of microplastics (MPs) in the Miri coast, targeting their occurrences, characterisation, and potential sources. For a periodical study, coastal sediments were collected from three different time intervals (monsoon, post-monsoon, and post-COVID) and subjected to stereomicroscope, ATR-FTIR, and SEM-EDX analyses. These results show a significant increase of MPs in post-COVID samples by approximately 218% and 148% comparatively with monsoon and post-monsoon samples, respectively. The highest concentration of MPs was detected near the river mouths and industrial areas where the waste discharge rate and anthropogenic activities dominate. Fibre-type MPs are the most abundant, with an average of nearly 64%, followed by fragments, films, microbeads, and foams. The most dominant polymer types were polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyester (PET). Overall, the current study shows a better understanding of MPs occurrence and potential sources in the Miri coastal area.
  3. Gantayat RR, Mohan Viswanathan P, Ramasamy N, Sabarathinam C
    Environ Sci Pollut Res Int, 2023 Aug;30(40):92692-92719.
    PMID: 37495801 DOI: 10.1007/s11356-023-28596-5
    A comprehensive geochemical study was conducted in the Sibuti River estuary by considering water, suspended solids (SS), and sediment samples from 36 stations during southwest monsoon (SWM) and northeast monsoon (NEM). In this study, the distribution of in situ parameters, major ions, nutrients, trace metals, and isotopes (δD, δ18O) were analyzed in water samples, whereas sediments and SS were studied for trace metals. The distribution revealed that suspended solids were the major carrier of Cd, Zn, and Mn, whereas sediments worked as a major source of Co, Cr, Ba, Se, Cu, and Pb. Na-Cl water type and ion exchange dominated the lower part of the estuary during both seasons. However, the mixed mechanism of Ca-Cl, Ca-Mg-Cl, and higher weathering indicated reverse ion exchange in the intermediate and upper parts of the estuary. Isotopic signatures of δD and δ18O in estuarine water indicate that the precipitation over the Limbang area dominates during SWM, whereas higher evaporation was confirmed during NEM. The factor analysis revealed that seawater influence in the estuary majority controlled the water chemistry irrespective of seasons. Major ions were mainly regulated by the tidal influence during the low flow time of the river (SWM), whereas the mixing mechanism of weathering and seawater controlled the concentrations during NEM. Nutrients such as NO3, SO42-, NH3, and NH4+ mainly originated from the agricultural fields and nitrification along with ammonification were responsible for the recycling of such nutrients. Trace metals except Cd were found to be geogenic in nature and originating mainly from the oxidation of pyrites present in the sandstone and mudstones of the Sibuti Formation. Redox condition was catalyzed by microorganisms near the river mouth, whereas Al-oxyhydroxides and Fe-oxyhydroxides complexes in the intermediate and upper part under oxygenated conditions controlled the absorption of metals. Overall, the estuary was found to be absorptive in nature due to ideal pH conditions and was confirmed by the saturation index (SI) of minerals.
  4. Chandrasekar T, Keesari T, Gopalakrishnan G, Karuppannan S, Senapathi V, Sabarathinam C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):183-207.
    PMID: 33392777 DOI: 10.1007/s00244-020-00803-1
    Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 μg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 μg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.
  5. Mathivanan M, Sabarathinam C, Mohan Viswanathan P, Senapathi V, Nadesan D, Indrani GG, et al.
    Environ Res, 2022 Jan;203:111791.
    PMID: 34333012 DOI: 10.1016/j.envres.2021.111791
    Uranium (U) in groundwater is hazardous to human health, especially if it is present in drinking water. The semiarid regions of southern India chiefly depend on groundwater for drinking purposes. In this regard, a comprehensive sampling strategy was adopted to collect groundwater representing different lithologies of the region. The samples were collected in two different seasons and analysed for major and minor ions along with total U in the groundwater. Two samples during pre monsoon (PRM) and seven samples during post monsoon (POM) had U > 30 μgL-1, which is above the World Health Organization's provisional guideline value. The high concentration of U (188 μgL-1) was observed in the alluvial formation though a few samples showed the release of U near the pink granite (39 μgL-1) and the concentration was low in the lateritic formation (10 μgL-1). The uranyl carbonato complexes UO2(CO3)22- and UO2(CO3)34- were associated with high pH which facilitated the transport of U into groundwater especially during POM. U3O8 is the major form observed in groundwater compared to either UO2 or UO3 in the both seasons. The uranium oxides were observed to be more prevalent at the neutral pH. Though U concentration increases with pH, it is mainly governed by the redox conditions. The principal component analysis (PCA) analysis also suggested redox conditions in groundwater to be the major process facilitating the U release mechanism regardless of the season. The POM season has an additional source of U in groundwater due to the application of nitrogenous fertilizers in the alluvium region. Furthermore, redox mobilization factor was predominantly observed near the coastal region and in the agricultural regions. The process of infiltration of the fertilizer-induced U was enhanced by the agricultural runoff into the surface water bodies in the region. Health risk assessment was also carried out by determining annual effective dose rate, cancer mortality risk, lifetime average daily dose and hazard quotient to assess the portability of groundwater in the study area. Artificial recharge technique and reducing the usage of chemical based fertilizers for irrigation are suggested as sustainable plans to safeguard the vulnerable water resource in this region.
  6. Vasanthakumari Sivasankara Pillai A, Sabarathinam C, Keesari T, Chandrasekar T, Rajendiran T, Senapathi V, et al.
    Environ Sci Pollut Res Int, 2020 Jun;27(16):20037-20054.
    PMID: 32236808 DOI: 10.1007/s11356-020-08258-6
    Hydrogeochemical understanding of groundwater is essential for the effective management of groundwater. This study has been carried out to have concrete data for the seasonal variations in hydrogeochemistry of groundwater in central Tamilnadu forming a complex geological terrain with a varied lithology. A total of 244 groundwater samples were collected during four different seasons, viz, southwest monsoon (SWM), summer (SUM), postmonsoon (POM), and northeast monsoon (NEM) from bore wells. The physical parameters such as pH, temperature, TDS, ORP, humidity, and electrical conductivity (EC) were measured insitu, whereas major ions were analyzed in the lab adopting standard procedures. Overall, higher EC and NO3 values were observed and exceeded the WHO permissible limit irrespective of seasons, except for NO3 in SWM. Na and HCO3 are the dominant cation and anion in the groundwater irrespective of seasons. The highest average values of Na (65.06 mg L-1) and HCO3 (350.75 mg L-1) were noted during SWM. Statistical analysis was carried out to elucidate the hydrogeochemistry of the region. Initially, to understand the ionic relationship, correlation matrix was used followed by factor analysis for determination of major geochemical control and later factor scores were derived to understand the regional representations. An attempt has also been made to identify the samples influenced by multiple geochemical processes and to understand their spatial variation in the study period. Correlation of geochemical parameters reveals a excellent positive correlation between Ca and NO3 in SUM, SWM, and NEM due to the dominant of anthropogenic sources and minor influence of weathering process. Strongly loaded factor scores are found to be mostly in the following order POM > NEM > SWM > SUM. Principal component analysis of different seasons indicates the interplay of natural weathering and anthropogenic factors. Overall, the predominant geochemical processes in this region, irrespective of seasons are weathering and, ion exchange and anthropogenic activities.
  7. Rajendiran T, Sabarathinam C, Chandrasekar T, Keesari T, Senapathi V, Sivaraman P, et al.
    Environ Sci Pollut Res Int, 2019 Oct;26(28):29173-29190.
    PMID: 31392611 DOI: 10.1007/s11356-019-05962-w
    This study considered the temporal variations in rainfall and water level patterns as governing factors, which influence the geochemical process of coastal aquifer around Pondicherry, South India. Rainfall and water level data were collected from 2006 to 2016, which showed that the amount of rainfall from 2006 to 2011 was higher than that of 2011 to 2016. To understand the geochemical process governing groundwater, samples were collected during 2006 (n = 54), followed by 2011 (n = 93), and during 2016 (n = 63) as part of continuous observation. The major ions and stable isotopes (δ18O and δD) were analyzed in the samples to determine the geochemical variations. The predominant types were noted as Na-HCO3 and Na-Cl; Ca-HCO3 and Ca-Mg-Cl; and Na-Cl and Ca-Mg-Cl in 2006, 2011, and 2016, respectively. Saturation states of sulfate and carbonate minerals were compared for the study periods and it indicates that the saturation index (SI) values were increased from 2006 to 2011, but decreased from 2011 to 2016. PHREEQC inverse modeling revealed the predominance for the dissolution and leaching of carbonate minerals during increased rainy periods, and the increase of halite saturation during lesser rainfall period. AQUACHEM mixing studies suggested that geochemical signatures of 2006 and 2011 were preserved in samples of 2016 in different proportions. Considering the major factors, the main processes prevailing in the study area were inferred to be dissolution and leaching during 2006~2011 years and seawater intrusion along with ion exchange during 2011~2016 years. In all these periods of study, anthropogenic impact was also identified in the groundwater samples. Hence, this study revealed that the rainfall and water level gave a significant variation in the geochemical process of groundwater in the coastal aquifer system.
  8. Sabarathinam C, Mohan Viswanathan P, Senapathi V, Karuppannan S, Samayamanthula DR, Gopalakrishnan G, et al.
    PMID: 35028838 DOI: 10.1007/s11356-021-17481-8
    The study aims to determine the impact of global meteorological parameters on SARS-COV-2, including population density and initiation of lockdown in twelve different countries. The daily trend of these parameters and COVID-19 variables from February 15th to April 25th, 2020, were considered. Asian countries show an increasing trend between infection rate and population density. A direct relationship between the time-lapse of the first infected case and the period of suspension of movement controls the transmissivity of COVID-19 in Asian countries. The increase in temperature has led to an increase in COVID-19 spread, while the decrease in humidity is consistent with the trend in daily deaths during the peak of the pandemic in European countries. Countries with 65°F temperature and 5 mm rainfall have a negative impact on COVID-19 spread. Lower oxygen availability in the atmosphere, fine droplets of submicron size together with infectious aerosols, and low wind speed have contributed to the increase in total cases and mortality in Germany and France. The onset of the D614G mutation and subsequent changes to D614 before March, later G614 in mid-March, and S943P, A831V, D839/Y/N/E in April were observed in Asian and European countries. The results of the correlation and factor analysis show that the COVID-19 cases and the climatic factors are significantly correlated with each other. The optimum meteorological conditions for the prevalence of G614 were identified. It was observed that the complex interaction of global meteorological factors and changes in the mutational form of CoV-2 phase I influenced the daily mortality rate along with other comorbid factors. The results of this study could help the public and policymakers to create awareness of the COVID-19 pandemic.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links