Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Zhang JB, Dai C, Wang Z, You X, Duan Y, Lai X, et al.
    Water Res, 2023 Oct 01;244:120555.
    PMID: 37666149 DOI: 10.1016/j.watres.2023.120555
    Herein, biochar was prepared using rice straw, and it served as the peroxymonosulfate (PMS) activator to degrade naphthalene (NAP). The results showed that pyrolysis temperature has played an important role in regulating biochar structure and properties. The biochar prepared at 900°C (BC900) had the best activation capacity and could remove NAP in a wide range of initial pH (5-11). In the system of BC900/PMS, multi-reactive species were produced, in which 1O2 and electron transfer mainly contributed to NAP degradation. In addition, the interference of complex groundwater components on the NAP removal rate must get attention. Cl- had a significant promotional effect but risked the formation of chlorinated disinfection by-products. HCO3-, CO32-, and humic acid (HA) had an inhibitory effect; surfactants had compatibility problems with the BC900/PMS system, which could lead to unproductive consumption of PMS. Significantly, the BC900/PMS system showed satisfactory remediation performance in spiked natural groundwater and soil, and it could solve the problem of persistent groundwater contamination caused by NAP desorption from the soil. Besides, the degradation pathway of NAP was proposed, and the BC900/PMS system could degrade NAP into low or nontoxic products. These suggest that the BC900/PMS system has promising applications in in-situ groundwater remediation.
    Matched MeSH terms: Groundwater*
  2. Fauzie, M. J., Azwan, M. M. Z., Hasfalina, C. M., Mohammed, T. A.
    MyJurnal
    Alluvial aquifers can be found in most of the coastal areas of Peninsular Malaysia. Seven tube wells located in such aquifers in the west coast of Selangor state had their performance evaluated by carryingout step drawdown tests. The performance of these wells was evaluated in terms of aquifer loss, well loss, specific capacity and well efficiency. The aquifer loss coefficient and well loss coefficient were found to be in the range of 0.0198 hrm-2 to 0.4014 hrm-2 and from 0.0001 hr2 m-5 to 0.0410 hr2 m-5, respectively. The drawdown in tube wells TW1 and TW7 is mainly influenced by well loss component as compared to the aquifer loss component, while in tube wells TW2, TW3, TW4, and TW5, the drawdown is mainly influenced by aquifer loss component. The drawdown in tube well TW6 is influenced by aquifer loss component at a low discharge rate, but at high discharge rate, it is influenced by well loss component. The specific capacity and efficiency of the tested tube wells varied from 1.329 m2 hr-1 to 40.166 m2 hr-1, and from 11% to 96%, respectively. Tube wells TW2 and TW4 are categorized as high productive wells, while tube wells TW1, TW3, TW5 and TW7 are categorized as moderate productive wells and tube well TW6 as low productive well.
    Matched MeSH terms: Groundwater
  3. Zainol NFM, Zainuddin AH, Looi LJ, Aris AZ, Isa NM, Sefie A, et al.
    PMID: 34071804 DOI: 10.3390/ijerph18115733
    Rapid urbanization and industrial development in the Langat Basin has disturbed the groundwater quality. The populations' reliance on groundwater sources may induce possible risks to human health such as cancer and endocrine dysfunction. This study aims to determine the groundwater quality of an urbanized basin through 24 studied hydrochemical parameters from 45 groundwater samples obtained from 15 different sampling stations by employing integrated multivariate analysis. The abundance of the major ions was in the following order: bicarbonate (HCO3-) > chloride (Cl-) > sodium (Na+) > sulphate (SO42-) > calcium (Ca2+) > potassium (K+) > magnesium (Mg2+). Heavy metal dominance was in the following order: Fe > Mn > Zn > As > Hg > Pb > Ni > Cu > Cd > Se > Sr. Classification of the groundwater facies indicated that the studied groundwater belongs to the Na-Cl with saline water type and Na-HCO3 with mix water type characteristics. The saline water type characteristics are derived from agricultural activities, while the mixed water types occur from water-rock interaction. Multivariate analysis performance suggests that industrial, agricultural, and weathering activities have contributed to groundwater contamination. The study will help in the understanding of the groundwater quality issue and serve as a reference for other basins with similar characteristics.
    Matched MeSH terms: Groundwater*
  4. Mustafa S, Darwish M, Bahar A, Aziz ZA
    Ground Water, 2019 09;57(5):756-763.
    PMID: 30740693 DOI: 10.1111/gwat.12868
    Analytical studies for well design adjacent to river banks are the most significant practical task in cases involving the efficiency of riverbank filtration systems. In times when high pollution of river water is joined with increasing water demand, it is necessary to design pumping wells near the river that provide acceptable amounts of river water with minimum contaminant concentrations. This will guarantee the quality and safety of drinking water supplies. This article develops an analytical solution based on the Green's function approach to solve an inverse problem: based on the required level of contaminant concentration and planned pumping time period, the shortest distance to the riverbank that has the maximum percentage of river water is determined. This model is developed in a confined and homogenous aquifer that is partially penetrated by the stream due to the existence of clogging layers. Initially, the analytical results obtained at different pumping times, rates and with different values of initial concentration are checked numerically using the MODFLOW software. Generally, the distance results obtained from the proposed model are acceptable. Then, the model is validated by data related to two pumping wells located at the first riverbank filtration pilot project conducted in Malaysia.
    Matched MeSH terms: Groundwater*
  5. Rahim F, Abdullah SRS, Hasan HA, Kurniawan SB, Mamat A, Yusof KA, et al.
    Sci Total Environ, 2022 Mar 25;814:152799.
    PMID: 34982990 DOI: 10.1016/j.scitotenv.2021.152799
    A reedbed system planted with Phragmites australis was implemented to treat chlorinated hydrocarbon-contaminated groundwater in an industrial plant area. Reedbed commissioning was conducted from July 2016 to November 2016 to treat contaminated groundwater via a pump-and-treat mechanism. Combination of horizontal and vertical reedbed systems was applied to treat 1,2-dichloroethane (1,2 DCA) under four parallel installations. The 2-acre horizontal and vertical reedbed systems were designed to treat approximately 305 m3/day of pumped groundwater. Initial concentration of 1,2 DCA was observed at 0.362 mg/L to 4320 mg/L, and the reedbed system successfully reduced the concentration up to 67.9%. The average outlet concentration was measured to be 2.08 mg/L, which was lower than the site-specific target level of 156 mg/L. Natural attenuation analysis was conducted using first-order decay kinetics, showing an average natural attenuation rate of 0.00372/year. Natural attenuation of 1,2 DCA was observed in shallow monitoring wells, which was indicated by the reduction trend of 1,2 DCA concentration, thereby confirming that the reedbed system worked well to remove 1.2 DCA from contaminated groundwater at the shallow profile.
    Matched MeSH terms: Groundwater*
  6. Chidambaram S, Panda B, Keesari T, Prasanna MV, Singh DK, Ramanathan AL
    Mar Pollut Bull, 2022 Jan;174:113273.
    PMID: 35090268 DOI: 10.1016/j.marpolbul.2021.113273
    The dynamics of the coastal aquifers are well-expressed by geochemical and isotopic signatures. Coastal regions often exhibit complex groundwater recharge pattern due to the influence of depression in the Bay of Bengal, tidal variations on surface waters, saline water intrusion and agricultural return flows. In this research, groundwater recharge processes occurring in coastal Tamil Nadu, South India were evaluated using major ion chemistry and environmental isotopes. A total of 170 groundwater samples were collected from shallow and deep aquifers during both post-monsoon (POM) and pre-monsoon (PRM) seasons. The isotopic results showed a wide variation in the shallow groundwater, suggesting contribution from multiple recharge sources. But, the deeper groundwater recharge is mainly from precipitation. The northern part of the study area showed more depleted isotopic values, which rapidly changed towards south from -6.8 to -4.4‰. Alternatively, central and southern parts exhibited relatively enriched isotopic content with variation from -0.58 to -2.7‰. Groundwater was discerned to be brackish to saline with chloride content, 600-2060 mgL-1 and δ18O ranging from -5.8 to -4.5‰, suggesting influence of the saline water sources. A minor influence of anthropogenic activities was also observed in the deeper groundwater during PRM, which was confirmed by tritium and Cl- trends. The old groundwater with depleted isotopic content infer recharged by distant sources while modern groundwater with enriched isotopes points to the influence of evaporated recharge.
    Matched MeSH terms: Groundwater*
  7. Ismanto A, Hadibarata T, Widada S, Indrayanti E, Ismunarti DH, Safinatunnajah N, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):467-482.
    PMID: 36520279 DOI: 10.1007/s00449-022-02826-5
    Groundwater is defined as water that exists underground in voids or gaps in sediments and is extracted for human consumption from aquifers. It is critical to our daily lives because it contributes to the sustainability of our natural ecosystem while also providing economic benefits. Heavy metals are metallic compounds with a relatively high atomic weight and density compared to water. In Malaysia, heavy metal contamination of groundwater has become a concern due to rapid population growth, economic development, and a lack of environmental awareness. Environmental factors or their behaviors, such as density, viscosity, or volume, affect the distribution and transportation of heavy metals. The article discusses the difficulties created by the presence of heavy metals in groundwater supplies and the resulting health problems. Additionally, remediation methods are discussed for managing contaminated water to preserve the ecological environment for current and future generations, as well as their advantages and disadvantages.
    Matched MeSH terms: Groundwater*
  8. Alsubih M, El Morabet R, Khan RA, Khan NA, Ul Haq Khan M, Ahmed S, et al.
    Environ Sci Pollut Res Int, 2021 Nov;28(44):63017-63031.
    PMID: 34218378 DOI: 10.1007/s11356-021-15062-3
    Groundwater is a primary natural water source in the absence of surface water bodies. Groundwater in urban environments experiences unprecedented stress from urban growth, population increase, and industrial activities. This study assessed groundwater quality in terms of arsenic and heavy metal contamination in three industrial areas (Shahdara, Jhilmil, and Patparganj), Delhi, India. The water quality was assessed over a 3-year time interval (i.e., 2015 and 2018). The groundwater constituents investigated were As, Fe, Cr, Cd, Ni, Zn, Mn, Cu, and Pb. Metal index and heavy metal pollution indexes were estimated to assess groundwater pollution. The health risk was evaluated in terms of non-carcinogenic and carcinogenic risk assessment. Patparganj industrial area saw increment in concentration for Cu 0.23 mg/L (2015)-0.85 mg/L (2018), Zn 0.51 mg/L (2015)-7.2 mg/L (2018), Fe 0.32 mg/L (2015)-0.9 mg/L (2018), Cr 0.21 mg/L (2015)-0.26 mg/L (2018), Mn 0.14 mg/L (2015)-0.25 mg/L (2018), Ni 0.04 mg/L (2015)-0.34 mg/L (2018), and As 0.01 mg/L (2015)-0.18 mg/L (2018). Cd and Pb concentrations were observed to decrease by 40-90 % and 85-99% for all the three industrial areas. Metal index and heavy metal index values were found to be >1 for all locations. The risk quotient value > 1 was observed for all locations in the year 2015 but was found to increase further to a range of RQ 10-62 in the year 2018, inferring increased non-carcinogenic risk to consumers. The carcinogenic risk was significant with respect to Fe (0.2-0.7), Zn (0.001-0.007), and As (0.002-0.003) for all locations in the year 2015. This study concludes that groundwater in the three industrial areas is highly polluted and is not fit for human consumption. Further studies are required to explore possible control measures and develop methods to mitigate groundwater pollution, sustainable management, and optimized use to conserve it for future generations.
    Matched MeSH terms: Groundwater*
  9. Mohd Azlan NNI, Abdul Malek M, Zolkepli M, Mohd Salim J, Ahmed AN
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20261-20272.
    PMID: 33405154 DOI: 10.1007/s11356-020-11908-4
    Sustainable water demand management has become a necessity to the world since the immensely growing population and development have caused water deficit and groundwater depletion. This study aims to overcome water deficit by analyzing water demand at Kenyir Lake, Terengganu, using a fuzzy inference system (FIS). The analysis is widened by comparing FIS with the multiple linear regression (MLR) method. FIS applied as an analysis tool provides good generalization capability for optimum solutions and utilizes human behavior influenced by expert knowledge in water resources management for fuzzy rules specified in the system, whereas MLR can simultaneously adjust and compare several variables as per the needs of the study. The water demand dataset of Kenyir Lake was analyzed using FIS and MLR, resulting in total forecasted water consumptions at Kenyir Lake of 2314.38 m3 and 1358.22 m3, respectively. It is confirmed that both techniques converge close to the actual water consumption of 1249.98 m3. MLR showed the accuracy of the water demand values with smaller forecasted errors to be higher than FIS did. To attain sustainable water demand management, the techniques used can be examined extensively by researchers, educators, and learners by adding more variables, which will provide more anticipated outcomes.
    Matched MeSH terms: Groundwater*
  10. Lawson-Wood K, Jaafar M, Felipe-Sotelo M, Ward NI
    Environ Sci Pollut Res Int, 2021 Sep;28(35):48929-48941.
    PMID: 33928502 DOI: 10.1007/s11356-021-13902-w
    Some regions of Argentina are affected by high concentrations of molybdenum, arsenic and vanadium from natural sources in their groundwater. In particular, Mo levels in groundwater from Eduardo Castex (La Pampa, Argentina) typically exceed the guidelines for drinking water formerly established by WHO at 70 μg/L. Therefore, this study investigated the uptake of Mo in plants, using cress (Lepidium sativum L.) as a model using hydroponic experiments with synthetic solutions and groundwater from La Pampa. Cress grown from control experiments (150 μg/L Mo, pH 7) presented an average Mo concentration of 35.2 mg/kg (dry weight, d.w.), higher than the typical total plant range (0.7-2.5 mg/kg d.w.) in the literature. Using pooled groundwater samples (65.0-92.5 μg/L Mo) from wells of La Pampa (Argentina) as growth solutions resulted in significantly lower cress Mo levels (1.89-4.59 mg/kg d.w.) than were obtained for synthetic solutions of equivalent Mo concentration. This may be due to the high levels in these groundwater samples of As, V, Fe and Mn which are known to be associated with volcanic deposits. This research addressed the hitherto scarcity of data about the effect of various physicochemical parameters on the uptake of Mo in plants.
    Matched MeSH terms: Groundwater*
  11. Rathinasamy V, Mohamad ET, Komoo I, Legiman MKA, Romanah NA, Hanapi MNB
    Environ Monit Assess, 2023 Jun 16;195(7):850.
    PMID: 37326879 DOI: 10.1007/s10661-023-11453-w
    Jurong Formation underlies part of Southern Johor Bahru which comprises well cemented and consolidated volcanic-sedimentary rocks. The study aims to assess quality and hydrogeochemistry of rock aquifer in Jurong Formation at Southern Johor Bahru which is mainly overlain by rhyolitic tuff. It also evaluates the differences in quality and hydrogeochemistry of rhyolitic tuff aquifer found in source and floodplain zones of South-West Johor Rivers Basin. In this study, a total of nine samples from four wells, namely TW1-TW4, were collected at foothills of Gunung Pulai (TW1) and Iskandar Puteri (TW2-TW4) in Southern Johor Bahru. The samples were examined for physiochemical parameters. The groundwater in the study area is fresh and non-saline with hardness of soft to hard. The pH of groundwater in source zone is significantly higher than in floodplain zone. Meanwhile, the hardness of groundwater in source zone is significantly lower than in other deep wells in floodplain zone as more calcite mineral is present. The concentration of manganese, iron and zinc is lower at source zone than floodplain zone. Three facies of water types were encountered during the study such as CaNaHCO3 in TW2, CaHCO3 in TW1 and TW3 and CaCl2 in TW4. The deep wells in floodplain zone are susceptible to saline intrusion. Finally, the groundwater quality in the study area is found to control by rock weathering especially silicates and carbonates, rainfall and proximity to seawater. This suggests the major control on groundwater chemistry is due to leaching of volcanic rocks and dissolution on calcite infillings. In conclusion, the groundwater is clean and safe in general although pH value is slightly acidic closer to straits and magnesium's presence in higher concentration at TW2.
    Matched MeSH terms: Groundwater*
  12. Lee WS, Aziz HA, Tajarudin HA
    Water Environ Res, 2023 Aug;95(8):e10913.
    PMID: 37475142 DOI: 10.1002/wer.10913
    Groundwater is one of the alternatives to surface water that can be used for drinking water; however, it normally exists with high iron and manganese content. In this study, a column study was conducted to observe the elimination of iron (Fe) and manganese (Mn) in the groundwater under different retention times by using zeolite immobilized with iron-oxidizing bacteria (IOB). Rossellomorea sp., representing an IOB, was found from the isolation process and was further cultured in the laboratory for immobilization into the natural zeolite as replacement materials for the sand filter. When the zeolite assisted with the Rossellomorea sp. was used, the elimination of Fe and Mn were 99.34% and 88.92%, respectively, compared to the removal of Fe and Mn, which were 93.62% and 93.73%, respectively, for media without immobilization. The presence of Rossellomorea sp. enhances the Fe oxidation, resulting in high removal of Fe. The Thomas and Yoon-Nelson models were performed in both raw zeolite and zeolite with IOB. The total coliform (most probable number [MPN]) increased from 70.8 to 307.6 MPN/100 mL because of the Rossellomorea sp. present that promotes the growth of coliform bacteria. In conclusion, the immobilization of zeolite with IOB is a potential technique to extract the Fe and Mn in the groundwater. PRACTITIONER POINTS: Zeolite incorporated with Rossellomorea sp. has higher removal performance of Fe, whereas the removal of Mn reduced compared to the raw zeolite. The presence of Rossellomorea sp. enhances the oxidation of ferrous iron and improves the removal of Fe in the groundwater because the ferric iron is the priority ion to be exchanged. The removal of UV254 increase when Rossellomorea sp. present in the zeolite because the Rossellomorea sp. consume the natural organic matter as carbon source.
    Matched MeSH terms: Groundwater*
  13. Fulazzaky MA, Syafiuddin A, Muda K, Martin AY, Yusop Z, Ghani NHA
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121865-121880.
    PMID: 37962755 DOI: 10.1007/s11356-023-30967-x
    This paper reviewed the impacts of climate change on the management of the water sector in Malaysia discussing the current status of water resources, water service, and water-related disasters. The implementation of engineering practices was discussed to provide the detailed assessment of climate change impacts, risks, and adaptation for sustainable development. The narrative methods of reviewing the literatures were used to get an understanding on the engineering practices of water infrastructures, implication of the government policies, and several models as the main motivation behind the concept of integrated water resource management to contribute as part of the sustainable development goals to achieve a better and more sustainable future for all. The findings of this review highlighted the impacts of climate change on the rivers, sea, lakes, dams, and groundwater affecting the availability of water for domestic and industrial water supplies, irrigation, hydropower, and fisheries. The impacts of climate change on the water-related disasters have been indicated affecting drought-flood abrupt alternation and water pollution. Challenges of water management practices facing climate change should be aware of the updated intensity-duration-frequency curves, alternative sources of water, effective water demand management, efficiency of irrigation water, inter-basin water transfer, and nonrevenue water. The transferability of this review findings contribute to an engagement with the society and policy makers to mobilize for climate change adaptation in the water sector.
    Matched MeSH terms: Groundwater*
  14. Boo KBW, El-Shafie A, Othman F, Khan MMH, Birima AH, Ahmed AN
    Water Res, 2024 Mar 15;252:121249.
    PMID: 38330715 DOI: 10.1016/j.watres.2024.121249
    Groundwater, the world's most abundant source of freshwater, is rapidly depleting in many regions due to a variety of factors. Accurate forecasting of groundwater level (GWL) is essential for effective management of this vital resource, but it remains a complex and challenging task. In recent years, there has been a notable increase in the use of machine learning (ML) techniques to model GWL, with many studies reporting exceptional results. In this paper, we present a comprehensive review of 142 relevant articles indexed by the Web of Science from 2017 to 2023, focusing on key ML models, including artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support vector regression (SVR), evolutionary computing (EC), deep learning (DL), ensemble learning (EN), and hybrid-modeling (HM). We also discussed key modeling concepts such as dataset size, data splitting, input variable selection, forecasting time-step, performance metrics (PM), study zones, and aquifers, highlighting best practices for optimal GWL forecasting with ML. This review provides valuable insights and recommendations for researchers and water management agencies working in the field of groundwater management and hydrology.
    Matched MeSH terms: Groundwater*
  15. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Juahir H, Fakharian K
    ScientificWorldJournal, 2014;2014:419058.
    PMID: 24523640 DOI: 10.1155/2014/419058
    Hydrogeochemical investigations had been carried out at the Amol-Babol Plain in the north of Iran. Geochemical processes and factors controlling the groundwater chemistry are identified based on the combination of classic geochemical methods with geographic information system (GIS) and geostatistical techniques. The results of the ionic ratios and Gibbs plots show that water rock interaction mechanisms, followed by cation exchange, and dissolution of carbonate and silicate minerals have influenced the groundwater chemistry in the study area. The hydrogeochemical characteristics of groundwater show a shift from low mineralized Ca-HCO3, Ca-Na-HCO3, and Ca-Cl water types to high mineralized Na-Cl water type. Three classes, namely, C1, C2, and C3, have been classified using cluster analysis. The spatial distribution maps of Na(+)/Cl(-), Mg(2+)/Ca(2+), and Cl(-)/HCO3 (-) ratios and electrical conductivity values indicate that the carbonate and weathering of silicate minerals played a significant role in the groundwater chemistry on the southern and western sides of the plain. However, salinization process had increased due to the influence of the evaporation-precipitation process towards the north-eastern side of the study area.
    Matched MeSH terms: Groundwater/analysis; Groundwater/chemistry*
  16. Wu WY, Lo MH, Wada Y, Famiglietti JS, Reager JT, Yeh PJ, et al.
    Nat Commun, 2020 07 24;11(1):3710.
    PMID: 32709871 DOI: 10.1038/s41467-020-17581-y
    Groundwater provides critical freshwater supply, particularly in dry regions where surface water availability is limited. Climate change impacts on GWS (groundwater storage) could affect the sustainability of freshwater resources. Here, we used a fully-coupled climate model to investigate GWS changes over seven critical aquifers identified as significantly distressed by satellite observations. We assessed the potential climate-driven impacts on GWS changes throughout the 21st century under the business-as-usual scenario (RCP8.5). Results show that the climate-driven impacts on GWS changes do not necessarily reflect the long-term trend in precipitation; instead, the trend may result from enhancement of evapotranspiration, and reduction in snowmelt, which collectively lead to divergent responses of GWS changes across different aquifers. Finally, we compare the climate-driven and anthropogenic pumping impacts. The reduction in GWS is mainly due to the combined impacts of over-pumping and climate effects; however, the contribution of pumping could easily far exceed the natural replenishment.
    Matched MeSH terms: Groundwater
  17. Nasiman Sapari, Raja Zainariah Raja Azie, Hisyam Jusoh
    MyJurnal
    Hard rock formations consisting of granite and metasedimentary rocks in Peninsular Malaysia, have beenconsidered to be of poor aquifers. The map of shows the area underlain by hard rock as having poorto moderate potential for groundwater production (
    Matched MeSH terms: Groundwater
  18. Mustafa S, Bahar A, Aziz ZA, Darwish M
    J Contam Hydrol, 2020 Aug;233:103662.
    PMID: 32569923 DOI: 10.1016/j.jconhyd.2020.103662
    This article provides an analytical solute transport model to investigate the potential of groundwater contamination by polluted surface water in a two dimensional domain. The clogging of streambed which makes the aquifer partially penetrated by the stream, is considered in the model. The impacts of pumping process, hydraulic conductivity and clogging layer on the quality of water produced from nearby drinking water wells are evaluated. It is found that results are consistent with numerical simulation conducted by MODFLOW software. Moreover, the model is applied using data of contamination occurrence in Malaysia, where high contaminants concentrations are found close to streams. Results show that the pumping activities (rate and time period) are crucial factors when evaluating the risk of groundwater contamination from surface water. Additionally, this study illustrates that the increase in either hydraulic conductivity or leakance coefficient parameters due to the clogging layer will enlarge the area of contamination. The model is able to determine the suitable pumping rate and location of the well so that the contamination plume never reaches the extraction well, which is useful in constructing riverbank filtration sites.
    Matched MeSH terms: Groundwater*
  19. Harun HH, Kasim MRM, Nurhidayu S, Ash'aari ZH, Kusin FM, Karim MKA
    PMID: 33923119 DOI: 10.3390/ijerph18094562
    The aim of this study was to propose a groundwater quality index (GWQI) that presents water quality data as a single number and represents the water quality level. The development of the GWQI in agricultural areas is vital as the groundwater considered as an alternative water source for domestic purposes. The insufficiency of the groundwater quality standard in Malaysia revealed the importance of the GWQI development in determining the quality of groundwater. Groundwater samples were collected from thirteen groundwater wells in the Northern Kuala Langat and the Southern Kuala Langat regions from February 2018 to January 2019. Thirty-four parameters that embodied physicochemical characteristics, aggregate indicator, major ions, and trace elements were considered in the development of the GWQI. Multivariate analysis has been used to finalize the important parameters by using principal component analysis (PCA). Notably, seven parameters-electrical conductivity, chemical oxygen demand (COD), magnesium, calcium, potassium, sodium, and chloride were chosen to evaluate the quality of groundwater. The GWQI was then verified by comparing the groundwater quality in Kota Bharu, Kelantan. A sensitivity analysis was performed on this index to verify its reliability. The sensitivity GWQI has been analyzed and showed high sensitivity to any changes of the pollutant parameters. The development of GWQI should be beneficial to the public, practitioners, and industries. From another angle, this index can help to detect any form of pollution which ultimately could be minimized by controlling the sources of pollutants.
    Matched MeSH terms: Groundwater*
  20. Pillai P, Dharaskar S, Khalid M
    Chemosphere, 2021 Dec;284:131317.
    PMID: 34216929 DOI: 10.1016/j.chemosphere.2021.131317
    The current novel work presents the optimization of factors affecting defluoridation by Al doped ZnO nanoparticles using response surface methodology (RSM). Al doped ZnO nanoparticles were synthesized by the sol-gel method and validated by FTIR, XRD, TEM/EDS, TGA, BET, and particle size analysis. Moreover, a central composite design (CCD) was developed for the experimental study to know the interaction between Al doped ZnO adsorbent dosage, initial concentration of fluoride, and contact time on fluoride removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was achieved to discover the importance of the individual and the effect of variables on the response. The model predicted that the response significantly correlated with the experimental response (R2 = 0.97). Among the factors, the effect of adsorbent dose and contact time was considered to have more influence on the response than the concentration. The optimized process parameters by RSM presented the adsorbent dosage: 0.005 g, initial concentration of fluoride: 1.5 g/L, and contact time: 5 min, respectively. Kinetic, isotherm, and thermodynamic studies were also investigated. The co-existing ions were also studied. These results demonstrated that Al doped ZnO could be a promising adsorbent for effective defluoridation for water.
    Matched MeSH terms: Groundwater*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links